MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imass Structured version   Visualization version   GIF version

Theorem f1imass 7263
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imass ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))

Proof of Theorem f1imass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplrl 776 . . . . . . 7 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐴)
21sseld 3982 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐴))
3 simplr 768 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝐹𝐶) ⊆ (𝐹𝐷))
43sseld 3982 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) → (𝐹𝑎) ∈ (𝐹𝐷)))
5 simplll 774 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐹:𝐴1-1𝐵)
6 simpr 486 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝑎𝐴)
7 simp1rl 1239 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐶𝐴)
873expa 1119 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐶𝐴)
9 f1elima 7262 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐶𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
105, 6, 8, 9syl3anc 1372 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
11 simp1rr 1240 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐷𝐴)
12113expa 1119 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐷𝐴)
13 f1elima 7262 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐷𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
145, 6, 12, 13syl3anc 1372 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
154, 10, 143imtr3d 293 . . . . . . 7 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝑎𝐶𝑎𝐷))
1615ex 414 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐴 → (𝑎𝐶𝑎𝐷)))
172, 16syld 47 . . . . 5 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶 → (𝑎𝐶𝑎𝐷)))
1817pm2.43d 53 . . . 4 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐷))
1918ssrdv 3989 . . 3 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐷)
2019ex 414 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) → 𝐶𝐷))
21 imass2 6102 . 2 (𝐶𝐷 → (𝐹𝐶) ⊆ (𝐹𝐷))
2220, 21impbid1 224 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wss 3949  cima 5680  1-1wf1 6541  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fv 6552
This theorem is referenced by:  f1imaeq  7264  f1imapss  7265  enfin2i  10316  tsmsf1o  23649
  Copyright terms: Public domain W3C validator