MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imass Structured version   Visualization version   GIF version

Theorem f1imass 7301
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imass ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))

Proof of Theorem f1imass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplrl 776 . . . . . . 7 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐴)
21sseld 4007 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐴))
3 simplr 768 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝐹𝐶) ⊆ (𝐹𝐷))
43sseld 4007 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) → (𝐹𝑎) ∈ (𝐹𝐷)))
5 simplll 774 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐹:𝐴1-1𝐵)
6 simpr 484 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝑎𝐴)
7 simp1rl 1238 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐶𝐴)
873expa 1118 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐶𝐴)
9 f1elima 7300 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐶𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
105, 6, 8, 9syl3anc 1371 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
11 simp1rr 1239 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐷𝐴)
12113expa 1118 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐷𝐴)
13 f1elima 7300 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐷𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
145, 6, 12, 13syl3anc 1371 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
154, 10, 143imtr3d 293 . . . . . . 7 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝑎𝐶𝑎𝐷))
1615ex 412 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐴 → (𝑎𝐶𝑎𝐷)))
172, 16syld 47 . . . . 5 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶 → (𝑎𝐶𝑎𝐷)))
1817pm2.43d 53 . . . 4 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐷))
1918ssrdv 4014 . . 3 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐷)
2019ex 412 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) → 𝐶𝐷))
21 imass2 6132 . 2 (𝐶𝐷 → (𝐹𝐶) ⊆ (𝐹𝐷))
2220, 21impbid1 225 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wss 3976  cima 5703  1-1wf1 6570  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581
This theorem is referenced by:  f1imaeq  7302  f1imapss  7303  enfin2i  10390  tsmsf1o  24174  uhgrimisgrgriclem  47782  clnbgrgrimlem  47785
  Copyright terms: Public domain W3C validator