Step | Hyp | Ref
| Expression |
1 | | simplrl 774 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) → 𝐶 ⊆ 𝐴) |
2 | 1 | sseld 3920 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) → (𝑎 ∈ 𝐶 → 𝑎 ∈ 𝐴)) |
3 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) |
4 | 3 | sseld 3920 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐶) → (𝐹‘𝑎) ∈ (𝐹 “ 𝐷))) |
5 | | simplll 772 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐵) |
6 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
7 | | simp1rl 1237 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ 𝑎 ∈ 𝐴) → 𝐶 ⊆ 𝐴) |
8 | 7 | 3expa 1117 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝐶 ⊆ 𝐴) |
9 | | f1elima 7136 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑎 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐴) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐶) ↔ 𝑎 ∈ 𝐶)) |
10 | 5, 6, 8, 9 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐶) ↔ 𝑎 ∈ 𝐶)) |
11 | | simp1rr 1238 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ 𝑎 ∈ 𝐴) → 𝐷 ⊆ 𝐴) |
12 | 11 | 3expa 1117 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝐷 ⊆ 𝐴) |
13 | | f1elima 7136 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑎 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐴) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐷) ↔ 𝑎 ∈ 𝐷)) |
14 | 5, 6, 12, 13 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐷) ↔ 𝑎 ∈ 𝐷)) |
15 | 4, 10, 14 | 3imtr3d 293 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) ∧ 𝑎 ∈ 𝐴) → (𝑎 ∈ 𝐶 → 𝑎 ∈ 𝐷)) |
16 | 15 | ex 413 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) → (𝑎 ∈ 𝐴 → (𝑎 ∈ 𝐶 → 𝑎 ∈ 𝐷))) |
17 | 2, 16 | syld 47 |
. . . . 5
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) → (𝑎 ∈ 𝐶 → (𝑎 ∈ 𝐶 → 𝑎 ∈ 𝐷))) |
18 | 17 | pm2.43d 53 |
. . . 4
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) → (𝑎 ∈ 𝐶 → 𝑎 ∈ 𝐷)) |
19 | 18 | ssrdv 3927 |
. . 3
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) → 𝐶 ⊆ 𝐷) |
20 | 19 | ex 413 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) → 𝐶 ⊆ 𝐷)) |
21 | | imass2 6010 |
. 2
⊢ (𝐶 ⊆ 𝐷 → (𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷)) |
22 | 20, 21 | impbid1 224 |
1
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ↔ 𝐶 ⊆ 𝐷)) |