Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd6 Structured version   Visualization version   GIF version

Theorem cdlemd6 39377
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l ≀ = (leβ€˜πΎ)
cdlemd4.j ∨ = (joinβ€˜πΎ)
cdlemd4.a 𝐴 = (Atomsβ€˜πΎ)
cdlemd4.h 𝐻 = (LHypβ€˜πΎ)
cdlemd4.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemd6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))

Proof of Theorem cdlemd6
StepHypRef Expression
1 simp3 1136 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ))
21oveq2d 7427 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ (πΊβ€˜π‘ƒ)))
32oveq1d 7426 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ))(meetβ€˜πΎ)π‘Š) = ((𝑃 ∨ (πΊβ€˜π‘ƒ))(meetβ€˜πΎ)π‘Š))
4 simp1l 1195 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
5 simp1rl 1236 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ 𝐹 ∈ 𝑇)
6 simp21 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
7 cdlemd4.l . . . . . . 7 ≀ = (leβ€˜πΎ)
8 cdlemd4.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
9 eqid 2730 . . . . . . 7 (meetβ€˜πΎ) = (meetβ€˜πΎ)
10 cdlemd4.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
11 cdlemd4.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
12 cdlemd4.t . . . . . . 7 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
13 eqid 2730 . . . . . . 7 ((trLβ€˜πΎ)β€˜π‘Š) = ((trLβ€˜πΎ)β€˜π‘Š)
147, 8, 9, 10, 11, 12, 13trlval2 39337 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ))(meetβ€˜πΎ)π‘Š))
154, 5, 6, 14syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ))(meetβ€˜πΎ)π‘Š))
16 simp1rr 1237 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ 𝐺 ∈ 𝑇)
177, 8, 9, 10, 11, 12, 13trlval2 39337 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΊ) = ((𝑃 ∨ (πΊβ€˜π‘ƒ))(meetβ€˜πΎ)π‘Š))
184, 16, 6, 17syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΊ) = ((𝑃 ∨ (πΊβ€˜π‘ƒ))(meetβ€˜πΎ)π‘Š))
193, 15, 183eqtr4d 2780 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΉ) = (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΊ))
2019oveq2d 7427 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (𝑄 ∨ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΉ)) = (𝑄 ∨ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΊ)))
211oveq1d 7426 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)π‘Š)) = ((πΊβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)π‘Š)))
2220, 21oveq12d 7429 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ ((𝑄 ∨ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΉ))(meetβ€˜πΎ)((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)π‘Š))) = ((𝑄 ∨ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΊ))(meetβ€˜πΎ)((πΊβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)π‘Š))))
23 simp22 1205 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
24 simp23 1206 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)))
257, 8, 9, 10, 11, 12, 13cdlemc 39371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΉ))(meetβ€˜πΎ)((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)π‘Š))))
264, 5, 6, 23, 24, 25syl131anc 1381 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΉ))(meetβ€˜πΎ)((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)π‘Š))))
27 oveq2 7419 . . . . . . 7 ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ (πΊβ€˜π‘ƒ)))
2827breq2d 5159 . . . . . 6 ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) β†’ (𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ↔ 𝑄 ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ))))
2928notbid 317 . . . . 5 ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) β†’ (Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ↔ Β¬ 𝑄 ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ))))
3029biimpd 228 . . . 4 ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) β†’ (Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ))))
311, 24, 30sylc 65 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ)))
327, 8, 9, 10, 11, 12, 13cdlemc 39371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ))) β†’ (πΊβ€˜π‘„) = ((𝑄 ∨ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΊ))(meetβ€˜πΎ)((πΊβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)π‘Š))))
334, 16, 6, 23, 31, 32syl131anc 1381 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (πΊβ€˜π‘„) = ((𝑄 ∨ (((trLβ€˜πΎ)β€˜π‘Š)β€˜πΊ))(meetβ€˜πΎ)((πΊβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄)(meetβ€˜πΎ)π‘Š))))
3422, 26, 333eqtr4d 2780 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)) β†’ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  lecple 17208  joincjn 18268  meetcmee 18269  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  trLctrl 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333
This theorem is referenced by:  cdlemd7  39378
  Copyright terms: Public domain W3C validator