Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolex3N Structured version   Visualization version   GIF version

Theorem lvolex3N 39537
Description: There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lvolex3.l = (le‘𝐾)
lvolex3.a 𝐴 = (Atoms‘𝐾)
lvolex3.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lvolex3N ((𝐾 ∈ HL ∧ 𝑋𝑃) → ∃𝑞𝐴 ¬ 𝑞 𝑋)
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   ,𝑞   𝑋,𝑞
Allowed substitution hint:   𝑃(𝑞)

Proof of Theorem lvolex3N
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 lvolex3.l . . . 4 = (le‘𝐾)
3 eqid 2729 . . . 4 (join‘𝐾) = (join‘𝐾)
4 lvolex3.a . . . 4 𝐴 = (Atoms‘𝐾)
5 lvolex3.p . . . 4 𝑃 = (LPlanes‘𝐾)
61, 2, 3, 4, 5islpln2 39535 . . 3 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑟𝐴𝑠𝐴𝑡𝐴 (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡)))))
7 simp1l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑡𝐴 ∧ (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → 𝐾 ∈ HL)
8 simp1rl 1239 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑡𝐴 ∧ (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → 𝑟𝐴)
9 simp1rr 1240 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑡𝐴 ∧ (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → 𝑠𝐴)
10 simp2 1137 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑡𝐴 ∧ (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → 𝑡𝐴)
113, 2, 43dim3 39468 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴𝑡𝐴)) → ∃𝑞𝐴 ¬ 𝑞 ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))
127, 8, 9, 10, 11syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑡𝐴 ∧ (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → ∃𝑞𝐴 ¬ 𝑞 ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))
13 simp33 1212 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑡𝐴 ∧ (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))
14 breq2 5096 . . . . . . . . . 10 (𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡) → (𝑞 𝑋𝑞 ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡)))
1514notbid 318 . . . . . . . . 9 (𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡) → (¬ 𝑞 𝑋 ↔ ¬ 𝑞 ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡)))
1615rexbidv 3153 . . . . . . . 8 (𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡) → (∃𝑞𝐴 ¬ 𝑞 𝑋 ↔ ∃𝑞𝐴 ¬ 𝑞 ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡)))
1713, 16syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑡𝐴 ∧ (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → (∃𝑞𝐴 ¬ 𝑞 𝑋 ↔ ∃𝑞𝐴 ¬ 𝑞 ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡)))
1812, 17mpbird 257 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑡𝐴 ∧ (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → ∃𝑞𝐴 ¬ 𝑞 𝑋)
1918rexlimdv3a 3134 . . . . 5 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑠𝐴)) → (∃𝑡𝐴 (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡)) → ∃𝑞𝐴 ¬ 𝑞 𝑋))
2019rexlimdvva 3186 . . . 4 (𝐾 ∈ HL → (∃𝑟𝐴𝑠𝐴𝑡𝐴 (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡)) → ∃𝑞𝐴 ¬ 𝑞 𝑋))
2120adantld 490 . . 3 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑟𝐴𝑠𝐴𝑡𝐴 (𝑟𝑠 ∧ ¬ 𝑡 (𝑟(join‘𝐾)𝑠) ∧ 𝑋 = ((𝑟(join‘𝐾)𝑠)(join‘𝐾)𝑡))) → ∃𝑞𝐴 ¬ 𝑞 𝑋))
226, 21sylbid 240 . 2 (𝐾 ∈ HL → (𝑋𝑃 → ∃𝑞𝐴 ¬ 𝑞 𝑋))
2322imp 406 1 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ∃𝑞𝐴 ¬ 𝑞 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Atomscatm 39262  HLchlt 39349  LPlanesclpl 39491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39175  df-ol 39177  df-oml 39178  df-covers 39265  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-llines 39497  df-lplanes 39498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator