MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatmul Structured version   Visualization version   GIF version

Theorem mat2pmatmul 22647
Description: The transformation of matrices into polynomial matrices preserves the multiplication. (Contributed by AV, 29-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatmul ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝑥,𝑇,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦

Proof of Theorem mat2pmatmul
Dummy variables 𝑚 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.a . . . . . . . . . . . . 13 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2733 . . . . . . . . . . . . 13 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
31, 2matmulr 22354 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
43eqcomd 2739 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
54oveqdr 7380 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦))
6 eqid 2733 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2733 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 crngring 20165 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
98ad2antlr 727 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
10 simpll 766 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
11 mat2pmatbas.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐴)
1211eleq2i 2825 . . . . . . . . . . . . . . 15 (𝑥𝐵𝑥 ∈ (Base‘𝐴))
1312biimpi 216 . . . . . . . . . . . . . 14 (𝑥𝐵𝑥 ∈ (Base‘𝐴))
1413adantr 480 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵) → 𝑥 ∈ (Base‘𝐴))
1514adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐴))
161, 6matbas2 22337 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1716adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1815, 17eleqtrrd 2836 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1911eleq2i 2825 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ (Base‘𝐴))
2019biimpi 216 . . . . . . . . . . . . 13 (𝑦𝐵𝑦 ∈ (Base‘𝐴))
2120ad2antll 729 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐴))
2216eleq2d 2819 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑦 ∈ (Base‘𝐴)))
2322adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑦 ∈ (Base‘𝐴)))
2421, 23mpbird 257 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
252, 6, 7, 9, 10, 10, 10, 18, 24mamuval 22309 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
265, 25eqtrd 2768 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
27263ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑥(.r𝐴)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
28 oveq1 7359 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑖𝑥𝑚) = (𝑘𝑥𝑚))
29 oveq2 7360 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑚𝑦𝑗) = (𝑚𝑦𝑙))
3028, 29oveqan12d 7371 . . . . . . . . . . 11 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)) = ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))
3130mpteq2dv 5187 . . . . . . . . . 10 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))) = (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))
3231oveq2d 7368 . . . . . . . . 9 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)))) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
3332adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑙)) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)))) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
34 simp2 1137 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑘𝑁)
35 simp3 1138 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑙𝑁)
36 ovexd 7387 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) ∈ V)
3727, 33, 34, 35, 36ovmpod 7504 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑘(𝑥(.r𝐴)𝑦)𝑙) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
3837fveq2d 6832 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙)) = ((algSc‘𝑃)‘(𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))))
39 eqid 2733 . . . . . . 7 (0g𝑅) = (0g𝑅)
40 ringcmn 20202 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
418, 40syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
4241ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CMnd)
43423ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑅 ∈ CMnd)
44 mat2pmatbas.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
4544ply1ring 22161 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
468, 45syl 17 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
47 ringmnd 20163 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
4846, 47syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ Mnd)
4948ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Mnd)
50493ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑃 ∈ Mnd)
51103ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑁 ∈ Fin)
52 eqid 2733 . . . . . . . . . . . 12 (algSc‘𝑃) = (algSc‘𝑃)
53 eqid 2733 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
5446adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
5544ply1lmod 22165 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
568, 55syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
5756adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ LMod)
5852, 53, 54, 57asclghm 21822 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
5944ply1sca 22166 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6059adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6160oveq1d 7367 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 GrpHom 𝑃) = ((Scalar‘𝑃) GrpHom 𝑃))
6258, 61eleqtrrd 2836 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 GrpHom 𝑃))
63 ghmmhm 19140 . . . . . . . . . 10 ((algSc‘𝑃) ∈ (𝑅 GrpHom 𝑃) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6462, 63syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6564adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
66653ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6793ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑅 ∈ Ring)
6867adantr 480 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑅 ∈ Ring)
6934adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
70 simpr 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
71153ad2ant1 1133 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑥 ∈ (Base‘𝐴))
7271adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑥 ∈ (Base‘𝐴))
7372, 12sylibr 234 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑥𝐵)
741, 6, 11, 69, 70, 73matecld 22342 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑥𝑚) ∈ (Base‘𝑅))
7535adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
761fveq2i 6831 . . . . . . . . . . . . . . . 16 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
7711, 76eqtri 2756 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(𝑁 Mat 𝑅))
7877eleq2i 2825 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
7978biimpi 216 . . . . . . . . . . . . 13 (𝑦𝐵𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8079ad2antll 729 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
81803ad2ant1 1133 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8281adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8382, 78sylibr 234 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦𝐵)
841, 6, 11, 70, 75, 83matecld 22342 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑦𝑙) ∈ (Base‘𝑅))
856, 7ringcl 20170 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑘𝑥𝑚) ∈ (Base‘𝑅) ∧ (𝑚𝑦𝑙) ∈ (Base‘𝑅)) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ (Base‘𝑅))
8668, 74, 84, 85syl3anc 1373 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ (Base‘𝑅))
87 eqid 2733 . . . . . . . 8 (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))
88 ovexd 7387 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ V)
89 fvexd 6843 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (0g𝑅) ∈ V)
9087, 51, 88, 89fsuppmptdm 9267 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) finSupp (0g𝑅))
916, 39, 43, 50, 51, 66, 86, 90gsummptmhm 19854 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑃 Σg (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))) = ((algSc‘𝑃)‘(𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))))
9244ply1assa 22113 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
9392adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
9452, 53asclrhm 21829 . . . . . . . . . . . . . 14 (𝑃 ∈ AssAlg → (algSc‘𝑃) ∈ ((Scalar‘𝑃) RingHom 𝑃))
9593, 94syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) RingHom 𝑃))
9660oveq1d 7367 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
9795, 96eleqtrrd 2836 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
9897adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
99983ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
10099adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
101213ad2ant1 1133 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑦 ∈ (Base‘𝐴))
102101adantr 480 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦 ∈ (Base‘𝐴))
103102, 19sylibr 234 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦𝐵)
1041, 6, 11, 70, 75, 103matecld 22342 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑦𝑙) ∈ (Base‘𝑅))
105 eqid 2733 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
1066, 7, 105rhmmul 20405 . . . . . . . . 9 (((algSc‘𝑃) ∈ (𝑅 RingHom 𝑃) ∧ (𝑘𝑥𝑚) ∈ (Base‘𝑅) ∧ (𝑚𝑦𝑙) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))
107100, 74, 104, 106syl3anc 1373 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))
108107mpteq2dva 5186 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) = (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))
109108oveq2d 7368 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑃 Σg (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))) = (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))))
11038, 91, 1093eqtr2d 2774 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙)) = (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))))
111110mpoeq3dva 7429 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))))
112 mat2pmatbas.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
113 eqid 2733 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
114 eqid 2733 . . . . 5 (.r𝐶) = (.r𝐶)
11546ad2antlr 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
116 eqid 2733 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
117 eqid 2733 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
11893ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
119 simp2 1137 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
120 simp3 1138 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
121 simp1rl 1239 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑥𝐵)
1221, 6, 11, 119, 120, 121matecld 22342 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
12344, 52, 6, 113ply1sclcl 22201 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑥𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
124118, 122, 123syl2anc 584 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
125 simp1rr 1240 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑦𝐵)
1261, 6, 11, 119, 120, 125matecld 22342 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
12744, 52, 6, 113ply1sclcl 22201 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
128118, 126, 127syl2anc 584 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
129 oveq12 7361 . . . . . . 7 ((𝑘 = 𝑖𝑚 = 𝑗) → (𝑘𝑥𝑚) = (𝑖𝑥𝑗))
130129fveq2d 6832 . . . . . 6 ((𝑘 = 𝑖𝑚 = 𝑗) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
131130adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
132 oveq12 7361 . . . . . . 7 ((𝑚 = 𝑖𝑙 = 𝑗) → (𝑚𝑦𝑙) = (𝑖𝑦𝑗))
133132fveq2d 6832 . . . . . 6 ((𝑚 = 𝑖𝑙 = 𝑗) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
134133adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
135 fvexd 6843 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑚𝑁) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) ∈ V)
136 fvexd 6843 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑚𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) ∈ V)
137112, 113, 114, 105, 115, 10, 116, 117, 124, 128, 131, 134, 135, 136mpomatmul 22362 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))))
138111, 137eqtr4d 2771 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
1391matring 22359 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1408, 139sylan2 593 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
141140anim1i 615 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
142 3anass 1094 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐴 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
143141, 142sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵))
144 eqid 2733 . . . . . 6 (.r𝐴) = (.r𝐴)
14511, 144ringcl 20170 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐴)𝑦) ∈ 𝐵)
146143, 145syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) ∈ 𝐵)
147 mat2pmatbas.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
148147, 1, 11, 44, 52mat2pmatval 22640 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐴)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐴)𝑦)) = (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))))
14910, 9, 146, 148syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐴)𝑦)) = (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))))
150 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
151150anim2i 617 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐵))
152 df-3an 1088 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐵))
153151, 152sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵))
154147, 1, 11, 44, 52mat2pmatval 22640 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
155153, 154syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
156 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
157156anim2i 617 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐵))
158 df-3an 1088 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐵))
159157, 158sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵))
160147, 1, 11, 44, 52mat2pmatval 22640 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
161159, 160syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
162155, 161oveq12d 7370 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝐶)(𝑇𝑦)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
163138, 149, 1623eqtr4d 2778 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
164163ralrimivva 3176 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cotp 4583  cmpt 5174   × cxp 5617  cfv 6486  (class class class)co 7352  cmpo 7354  m cmap 8756  Fincfn 8875  Basecbs 17122  .rcmulr 17164  Scalarcsca 17166  0gc0g 17345   Σg cgsu 17346  Mndcmnd 18644   MndHom cmhm 18691   GrpHom cghm 19126  CMndccmn 19694  Ringcrg 20153  CRingccrg 20154   RingHom crh 20389  LModclmod 20795  AssAlgcasa 21789  algSccascl 21791  Poly1cpl1 22090   maMul cmmul 22306   Mat cmat 22323   matToPolyMat cmat2pmat 22620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-assa 21792  df-ascl 21794  df-psr 21848  df-mpl 21850  df-opsr 21852  df-psr1 22093  df-ply1 22095  df-mamu 22307  df-mat 22324  df-mat2pmat 22623
This theorem is referenced by:  mat2pmatmhm  22649
  Copyright terms: Public domain W3C validator