MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatmul Structured version   Visualization version   GIF version

Theorem mat2pmatmul 22618
Description: The transformation of matrices into polynomial matrices preserves the multiplication. (Contributed by AV, 29-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatmul ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝑥,𝑇,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦

Proof of Theorem mat2pmatmul
Dummy variables 𝑚 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.a . . . . . . . . . . . . 13 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2729 . . . . . . . . . . . . 13 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
31, 2matmulr 22325 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
43eqcomd 2735 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
54oveqdr 7415 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦))
6 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 crngring 20154 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
98ad2antlr 727 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
10 simpll 766 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
11 mat2pmatbas.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐴)
1211eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑥𝐵𝑥 ∈ (Base‘𝐴))
1312biimpi 216 . . . . . . . . . . . . . 14 (𝑥𝐵𝑥 ∈ (Base‘𝐴))
1413adantr 480 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵) → 𝑥 ∈ (Base‘𝐴))
1514adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐴))
161, 6matbas2 22308 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1716adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1815, 17eleqtrrd 2831 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1911eleq2i 2820 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ (Base‘𝐴))
2019biimpi 216 . . . . . . . . . . . . 13 (𝑦𝐵𝑦 ∈ (Base‘𝐴))
2120ad2antll 729 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐴))
2216eleq2d 2814 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑦 ∈ (Base‘𝐴)))
2322adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑦 ∈ (Base‘𝐴)))
2421, 23mpbird 257 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
252, 6, 7, 9, 10, 10, 10, 18, 24mamuval 22280 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
265, 25eqtrd 2764 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
27263ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑥(.r𝐴)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
28 oveq1 7394 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑖𝑥𝑚) = (𝑘𝑥𝑚))
29 oveq2 7395 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑚𝑦𝑗) = (𝑚𝑦𝑙))
3028, 29oveqan12d 7406 . . . . . . . . . . 11 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)) = ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))
3130mpteq2dv 5201 . . . . . . . . . 10 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))) = (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))
3231oveq2d 7403 . . . . . . . . 9 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)))) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
3332adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑙)) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)))) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
34 simp2 1137 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑘𝑁)
35 simp3 1138 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑙𝑁)
36 ovexd 7422 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) ∈ V)
3727, 33, 34, 35, 36ovmpod 7541 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑘(𝑥(.r𝐴)𝑦)𝑙) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
3837fveq2d 6862 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙)) = ((algSc‘𝑃)‘(𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))))
39 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
40 ringcmn 20191 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
418, 40syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
4241ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CMnd)
43423ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑅 ∈ CMnd)
44 mat2pmatbas.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
4544ply1ring 22132 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
468, 45syl 17 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
47 ringmnd 20152 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
4846, 47syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ Mnd)
4948ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Mnd)
50493ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑃 ∈ Mnd)
51103ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑁 ∈ Fin)
52 eqid 2729 . . . . . . . . . . . 12 (algSc‘𝑃) = (algSc‘𝑃)
53 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
5446adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
5544ply1lmod 22136 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
568, 55syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
5756adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ LMod)
5852, 53, 54, 57asclghm 21792 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
5944ply1sca 22137 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6059adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6160oveq1d 7402 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 GrpHom 𝑃) = ((Scalar‘𝑃) GrpHom 𝑃))
6258, 61eleqtrrd 2831 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 GrpHom 𝑃))
63 ghmmhm 19158 . . . . . . . . . 10 ((algSc‘𝑃) ∈ (𝑅 GrpHom 𝑃) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6462, 63syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6564adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
66653ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6793ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑅 ∈ Ring)
6867adantr 480 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑅 ∈ Ring)
6934adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
70 simpr 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
71153ad2ant1 1133 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑥 ∈ (Base‘𝐴))
7271adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑥 ∈ (Base‘𝐴))
7372, 12sylibr 234 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑥𝐵)
741, 6, 11, 69, 70, 73matecld 22313 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑥𝑚) ∈ (Base‘𝑅))
7535adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
761fveq2i 6861 . . . . . . . . . . . . . . . 16 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
7711, 76eqtri 2752 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(𝑁 Mat 𝑅))
7877eleq2i 2820 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
7978biimpi 216 . . . . . . . . . . . . 13 (𝑦𝐵𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8079ad2antll 729 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
81803ad2ant1 1133 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8281adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8382, 78sylibr 234 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦𝐵)
841, 6, 11, 70, 75, 83matecld 22313 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑦𝑙) ∈ (Base‘𝑅))
856, 7ringcl 20159 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑘𝑥𝑚) ∈ (Base‘𝑅) ∧ (𝑚𝑦𝑙) ∈ (Base‘𝑅)) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ (Base‘𝑅))
8668, 74, 84, 85syl3anc 1373 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ (Base‘𝑅))
87 eqid 2729 . . . . . . . 8 (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))
88 ovexd 7422 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ V)
89 fvexd 6873 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (0g𝑅) ∈ V)
9087, 51, 88, 89fsuppmptdm 9327 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) finSupp (0g𝑅))
916, 39, 43, 50, 51, 66, 86, 90gsummptmhm 19870 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑃 Σg (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))) = ((algSc‘𝑃)‘(𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))))
9244ply1assa 22084 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
9392adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
9452, 53asclrhm 21799 . . . . . . . . . . . . . 14 (𝑃 ∈ AssAlg → (algSc‘𝑃) ∈ ((Scalar‘𝑃) RingHom 𝑃))
9593, 94syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) RingHom 𝑃))
9660oveq1d 7402 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
9795, 96eleqtrrd 2831 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
9897adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
99983ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
10099adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
101213ad2ant1 1133 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑦 ∈ (Base‘𝐴))
102101adantr 480 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦 ∈ (Base‘𝐴))
103102, 19sylibr 234 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦𝐵)
1041, 6, 11, 70, 75, 103matecld 22313 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑦𝑙) ∈ (Base‘𝑅))
105 eqid 2729 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
1066, 7, 105rhmmul 20395 . . . . . . . . 9 (((algSc‘𝑃) ∈ (𝑅 RingHom 𝑃) ∧ (𝑘𝑥𝑚) ∈ (Base‘𝑅) ∧ (𝑚𝑦𝑙) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))
107100, 74, 104, 106syl3anc 1373 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))
108107mpteq2dva 5200 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) = (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))
109108oveq2d 7403 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑃 Σg (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))) = (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))))
11038, 91, 1093eqtr2d 2770 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙)) = (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))))
111110mpoeq3dva 7466 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))))
112 mat2pmatbas.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
113 eqid 2729 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
114 eqid 2729 . . . . 5 (.r𝐶) = (.r𝐶)
11546ad2antlr 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
116 eqid 2729 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
117 eqid 2729 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
11893ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
119 simp2 1137 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
120 simp3 1138 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
121 simp1rl 1239 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑥𝐵)
1221, 6, 11, 119, 120, 121matecld 22313 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
12344, 52, 6, 113ply1sclcl 22172 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑥𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
124118, 122, 123syl2anc 584 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
125 simp1rr 1240 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑦𝐵)
1261, 6, 11, 119, 120, 125matecld 22313 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
12744, 52, 6, 113ply1sclcl 22172 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
128118, 126, 127syl2anc 584 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
129 oveq12 7396 . . . . . . 7 ((𝑘 = 𝑖𝑚 = 𝑗) → (𝑘𝑥𝑚) = (𝑖𝑥𝑗))
130129fveq2d 6862 . . . . . 6 ((𝑘 = 𝑖𝑚 = 𝑗) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
131130adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
132 oveq12 7396 . . . . . . 7 ((𝑚 = 𝑖𝑙 = 𝑗) → (𝑚𝑦𝑙) = (𝑖𝑦𝑗))
133132fveq2d 6862 . . . . . 6 ((𝑚 = 𝑖𝑙 = 𝑗) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
134133adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
135 fvexd 6873 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑚𝑁) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) ∈ V)
136 fvexd 6873 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑚𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) ∈ V)
137112, 113, 114, 105, 115, 10, 116, 117, 124, 128, 131, 134, 135, 136mpomatmul 22333 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))))
138111, 137eqtr4d 2767 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
1391matring 22330 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1408, 139sylan2 593 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
141140anim1i 615 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
142 3anass 1094 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐴 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
143141, 142sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵))
144 eqid 2729 . . . . . 6 (.r𝐴) = (.r𝐴)
14511, 144ringcl 20159 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐴)𝑦) ∈ 𝐵)
146143, 145syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) ∈ 𝐵)
147 mat2pmatbas.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
148147, 1, 11, 44, 52mat2pmatval 22611 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐴)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐴)𝑦)) = (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))))
14910, 9, 146, 148syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐴)𝑦)) = (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))))
150 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
151150anim2i 617 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐵))
152 df-3an 1088 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐵))
153151, 152sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵))
154147, 1, 11, 44, 52mat2pmatval 22611 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
155153, 154syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
156 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
157156anim2i 617 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐵))
158 df-3an 1088 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐵))
159157, 158sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵))
160147, 1, 11, 44, 52mat2pmatval 22611 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
161159, 160syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
162155, 161oveq12d 7405 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝐶)(𝑇𝑦)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
163138, 149, 1623eqtr4d 2774 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
164163ralrimivva 3180 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cotp 4597  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Fincfn 8918  Basecbs 17179  .rcmulr 17221  Scalarcsca 17223  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661   MndHom cmhm 18708   GrpHom cghm 19144  CMndccmn 19710  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  LModclmod 20766  AssAlgcasa 21759  algSccascl 21761  Poly1cpl1 22061   maMul cmmul 22277   Mat cmat 22294   matToPolyMat cmat2pmat 22591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-assa 21762  df-ascl 21764  df-psr 21818  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-ply1 22066  df-mamu 22278  df-mat 22295  df-mat2pmat 22594
This theorem is referenced by:  mat2pmatmhm  22620
  Copyright terms: Public domain W3C validator