MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatmul Structured version   Visualization version   GIF version

Theorem mat2pmatmul 22634
Description: The transformation of matrices into polynomial matrices preserves the multiplication. (Contributed by AV, 29-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatmul ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝑥,𝑇,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦

Proof of Theorem mat2pmatmul
Dummy variables 𝑚 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.a . . . . . . . . . . . . 13 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2729 . . . . . . . . . . . . 13 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
31, 2matmulr 22341 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
43eqcomd 2735 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
54oveqdr 7381 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦))
6 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 crngring 20148 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
98ad2antlr 727 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
10 simpll 766 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
11 mat2pmatbas.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐴)
1211eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑥𝐵𝑥 ∈ (Base‘𝐴))
1312biimpi 216 . . . . . . . . . . . . . 14 (𝑥𝐵𝑥 ∈ (Base‘𝐴))
1413adantr 480 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵) → 𝑥 ∈ (Base‘𝐴))
1514adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐴))
161, 6matbas2 22324 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1716adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1815, 17eleqtrrd 2831 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1911eleq2i 2820 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ (Base‘𝐴))
2019biimpi 216 . . . . . . . . . . . . 13 (𝑦𝐵𝑦 ∈ (Base‘𝐴))
2120ad2antll 729 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐴))
2216eleq2d 2814 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑦 ∈ (Base‘𝐴)))
2322adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑦 ∈ (Base‘𝐴)))
2421, 23mpbird 257 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
252, 6, 7, 9, 10, 10, 10, 18, 24mamuval 22296 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
265, 25eqtrd 2764 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
27263ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑥(.r𝐴)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
28 oveq1 7360 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑖𝑥𝑚) = (𝑘𝑥𝑚))
29 oveq2 7361 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑚𝑦𝑗) = (𝑚𝑦𝑙))
3028, 29oveqan12d 7372 . . . . . . . . . . 11 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)) = ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))
3130mpteq2dv 5189 . . . . . . . . . 10 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))) = (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))
3231oveq2d 7369 . . . . . . . . 9 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)))) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
3332adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑙)) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)))) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
34 simp2 1137 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑘𝑁)
35 simp3 1138 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑙𝑁)
36 ovexd 7388 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) ∈ V)
3727, 33, 34, 35, 36ovmpod 7505 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑘(𝑥(.r𝐴)𝑦)𝑙) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
3837fveq2d 6830 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙)) = ((algSc‘𝑃)‘(𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))))
39 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
40 ringcmn 20185 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
418, 40syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
4241ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CMnd)
43423ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑅 ∈ CMnd)
44 mat2pmatbas.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
4544ply1ring 22148 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
468, 45syl 17 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
47 ringmnd 20146 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
4846, 47syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ Mnd)
4948ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Mnd)
50493ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑃 ∈ Mnd)
51103ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑁 ∈ Fin)
52 eqid 2729 . . . . . . . . . . . 12 (algSc‘𝑃) = (algSc‘𝑃)
53 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
5446adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
5544ply1lmod 22152 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
568, 55syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
5756adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ LMod)
5852, 53, 54, 57asclghm 21808 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
5944ply1sca 22153 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6059adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6160oveq1d 7368 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 GrpHom 𝑃) = ((Scalar‘𝑃) GrpHom 𝑃))
6258, 61eleqtrrd 2831 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 GrpHom 𝑃))
63 ghmmhm 19123 . . . . . . . . . 10 ((algSc‘𝑃) ∈ (𝑅 GrpHom 𝑃) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6462, 63syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6564adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
66653ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6793ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑅 ∈ Ring)
6867adantr 480 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑅 ∈ Ring)
6934adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
70 simpr 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
71153ad2ant1 1133 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑥 ∈ (Base‘𝐴))
7271adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑥 ∈ (Base‘𝐴))
7372, 12sylibr 234 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑥𝐵)
741, 6, 11, 69, 70, 73matecld 22329 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑥𝑚) ∈ (Base‘𝑅))
7535adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
761fveq2i 6829 . . . . . . . . . . . . . . . 16 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
7711, 76eqtri 2752 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(𝑁 Mat 𝑅))
7877eleq2i 2820 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
7978biimpi 216 . . . . . . . . . . . . 13 (𝑦𝐵𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8079ad2antll 729 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
81803ad2ant1 1133 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8281adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8382, 78sylibr 234 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦𝐵)
841, 6, 11, 70, 75, 83matecld 22329 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑦𝑙) ∈ (Base‘𝑅))
856, 7ringcl 20153 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑘𝑥𝑚) ∈ (Base‘𝑅) ∧ (𝑚𝑦𝑙) ∈ (Base‘𝑅)) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ (Base‘𝑅))
8668, 74, 84, 85syl3anc 1373 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ (Base‘𝑅))
87 eqid 2729 . . . . . . . 8 (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))
88 ovexd 7388 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ V)
89 fvexd 6841 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (0g𝑅) ∈ V)
9087, 51, 88, 89fsuppmptdm 9285 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) finSupp (0g𝑅))
916, 39, 43, 50, 51, 66, 86, 90gsummptmhm 19837 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑃 Σg (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))) = ((algSc‘𝑃)‘(𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))))
9244ply1assa 22100 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
9392adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
9452, 53asclrhm 21815 . . . . . . . . . . . . . 14 (𝑃 ∈ AssAlg → (algSc‘𝑃) ∈ ((Scalar‘𝑃) RingHom 𝑃))
9593, 94syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) RingHom 𝑃))
9660oveq1d 7368 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
9795, 96eleqtrrd 2831 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
9897adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
99983ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
10099adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
101213ad2ant1 1133 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑦 ∈ (Base‘𝐴))
102101adantr 480 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦 ∈ (Base‘𝐴))
103102, 19sylibr 234 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦𝐵)
1041, 6, 11, 70, 75, 103matecld 22329 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑦𝑙) ∈ (Base‘𝑅))
105 eqid 2729 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
1066, 7, 105rhmmul 20389 . . . . . . . . 9 (((algSc‘𝑃) ∈ (𝑅 RingHom 𝑃) ∧ (𝑘𝑥𝑚) ∈ (Base‘𝑅) ∧ (𝑚𝑦𝑙) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))
107100, 74, 104, 106syl3anc 1373 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))
108107mpteq2dva 5188 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) = (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))
109108oveq2d 7369 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑃 Σg (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))) = (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))))
11038, 91, 1093eqtr2d 2770 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙)) = (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))))
111110mpoeq3dva 7430 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))))
112 mat2pmatbas.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
113 eqid 2729 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
114 eqid 2729 . . . . 5 (.r𝐶) = (.r𝐶)
11546ad2antlr 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
116 eqid 2729 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
117 eqid 2729 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
11893ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
119 simp2 1137 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
120 simp3 1138 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
121 simp1rl 1239 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑥𝐵)
1221, 6, 11, 119, 120, 121matecld 22329 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
12344, 52, 6, 113ply1sclcl 22188 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑥𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
124118, 122, 123syl2anc 584 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
125 simp1rr 1240 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑦𝐵)
1261, 6, 11, 119, 120, 125matecld 22329 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
12744, 52, 6, 113ply1sclcl 22188 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
128118, 126, 127syl2anc 584 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
129 oveq12 7362 . . . . . . 7 ((𝑘 = 𝑖𝑚 = 𝑗) → (𝑘𝑥𝑚) = (𝑖𝑥𝑗))
130129fveq2d 6830 . . . . . 6 ((𝑘 = 𝑖𝑚 = 𝑗) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
131130adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
132 oveq12 7362 . . . . . . 7 ((𝑚 = 𝑖𝑙 = 𝑗) → (𝑚𝑦𝑙) = (𝑖𝑦𝑗))
133132fveq2d 6830 . . . . . 6 ((𝑚 = 𝑖𝑙 = 𝑗) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
134133adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
135 fvexd 6841 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑚𝑁) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) ∈ V)
136 fvexd 6841 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑚𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) ∈ V)
137112, 113, 114, 105, 115, 10, 116, 117, 124, 128, 131, 134, 135, 136mpomatmul 22349 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))))
138111, 137eqtr4d 2767 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
1391matring 22346 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1408, 139sylan2 593 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
141140anim1i 615 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
142 3anass 1094 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐴 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
143141, 142sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵))
144 eqid 2729 . . . . . 6 (.r𝐴) = (.r𝐴)
14511, 144ringcl 20153 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐴)𝑦) ∈ 𝐵)
146143, 145syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) ∈ 𝐵)
147 mat2pmatbas.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
148147, 1, 11, 44, 52mat2pmatval 22627 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐴)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐴)𝑦)) = (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))))
14910, 9, 146, 148syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐴)𝑦)) = (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))))
150 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
151150anim2i 617 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐵))
152 df-3an 1088 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐵))
153151, 152sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵))
154147, 1, 11, 44, 52mat2pmatval 22627 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
155153, 154syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
156 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
157156anim2i 617 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐵))
158 df-3an 1088 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐵))
159157, 158sylibr 234 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵))
160147, 1, 11, 44, 52mat2pmatval 22627 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
161159, 160syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
162155, 161oveq12d 7371 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝐶)(𝑇𝑦)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
163138, 149, 1623eqtr4d 2774 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
164163ralrimivva 3172 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cotp 4587  cmpt 5176   × cxp 5621  cfv 6486  (class class class)co 7353  cmpo 7355  m cmap 8760  Fincfn 8879  Basecbs 17138  .rcmulr 17180  Scalarcsca 17182  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626   MndHom cmhm 18673   GrpHom cghm 19109  CMndccmn 19677  Ringcrg 20136  CRingccrg 20137   RingHom crh 20372  LModclmod 20781  AssAlgcasa 21775  algSccascl 21777  Poly1cpl1 22077   maMul cmmul 22293   Mat cmat 22310   matToPolyMat cmat2pmat 22607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-assa 21778  df-ascl 21780  df-psr 21834  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-ply1 22082  df-mamu 22294  df-mat 22311  df-mat2pmat 22610
This theorem is referenced by:  mat2pmatmhm  22636
  Copyright terms: Public domain W3C validator