Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcperiod Structured version   Visualization version   GIF version

Theorem limcperiod 43059
Description: If 𝐹 is a periodic function with period 𝑇, the limit doesn't change if we shift the limiting point by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcperiod.f (𝜑𝐹:dom 𝐹⟶ℂ)
limcperiod.assc (𝜑𝐴 ⊆ ℂ)
limcperiod.3 (𝜑𝐴 ⊆ dom 𝐹)
limcperiod.t (𝜑𝑇 ∈ ℂ)
limcperiod.b 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
limcperiod.bss (𝜑𝐵 ⊆ dom 𝐹)
limcperiod.fper ((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
limcperiod.clim (𝜑𝐶 ∈ ((𝐹𝐴) lim 𝐷))
Assertion
Ref Expression
limcperiod (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem limcperiod
Dummy variables 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 24944 . . 3 ((𝐹𝐴) lim 𝐷) ⊆ ℂ
2 limcperiod.clim . . 3 (𝜑𝐶 ∈ ((𝐹𝐴) lim 𝐷))
31, 2sselid 3915 . 2 (𝜑𝐶 ∈ ℂ)
4 limcperiod.f . . . . . . . . 9 (𝜑𝐹:dom 𝐹⟶ℂ)
5 limcperiod.3 . . . . . . . . 9 (𝜑𝐴 ⊆ dom 𝐹)
64, 5fssresd 6625 . . . . . . . 8 (𝜑 → (𝐹𝐴):𝐴⟶ℂ)
7 limcperiod.assc . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
8 limcrcl 24943 . . . . . . . . . 10 (𝐶 ∈ ((𝐹𝐴) lim 𝐷) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐷 ∈ ℂ))
92, 8syl 17 . . . . . . . . 9 (𝜑 → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐷 ∈ ℂ))
109simp3d 1142 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
116, 7, 10ellimc3 24948 . . . . . . 7 (𝜑 → (𝐶 ∈ ((𝐹𝐴) lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))))
122, 11mpbid 231 . . . . . 6 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)))
1312simprd 495 . . . . 5 (𝜑 → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
1413r19.21bi 3132 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
15 simpl1l 1222 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) → 𝜑)
1615adantr 480 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → 𝜑)
17 simplr 765 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → 𝑏𝐵)
18 id 22 . . . . . . . . . . . . . . . 16 (𝑏𝐵𝑏𝐵)
19 limcperiod.b . . . . . . . . . . . . . . . . 17 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
20 oveq1 7262 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝑦 + 𝑇) = (𝑧 + 𝑇))
2120eqeq2d 2749 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑥 = (𝑦 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
2221cbvrexvw 3373 . . . . . . . . . . . . . . . . . . 19 (∃𝑦𝐴 𝑥 = (𝑦 + 𝑇) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑇))
23 eqeq1 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑤 = (𝑧 + 𝑇)))
2423rexbidv 3225 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (∃𝑧𝐴 𝑥 = (𝑧 + 𝑇) ↔ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)))
2522, 24syl5bb 282 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (∃𝑦𝐴 𝑥 = (𝑦 + 𝑇) ↔ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)))
2625cbvrabv 3416 . . . . . . . . . . . . . . . . 17 {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)}
2719, 26eqtri 2766 . . . . . . . . . . . . . . . 16 𝐵 = {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)}
2818, 27eleqtrdi 2849 . . . . . . . . . . . . . . 15 (𝑏𝐵𝑏 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)})
29 eqeq1 2742 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑏 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑏 = (𝑧 + 𝑇)))
3029rexbidv 3225 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (∃𝑧𝐴 𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3130elrab 3617 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)} ↔ (𝑏 ∈ ℂ ∧ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3228, 31sylib 217 . . . . . . . . . . . . . 14 (𝑏𝐵 → (𝑏 ∈ ℂ ∧ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3332simprd 495 . . . . . . . . . . . . 13 (𝑏𝐵 → ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇))
3433adantl 481 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇))
35 oveq1 7262 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) = ((𝑧 + 𝑇) − 𝑇))
36353ad2ant3 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) = ((𝑧 + 𝑇) − 𝑇))
377sselda 3917 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
38 limcperiod.t . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ∈ ℂ)
3938adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → 𝑇 ∈ ℂ)
4037, 39pncand 11263 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐴) → ((𝑧 + 𝑇) − 𝑇) = 𝑧)
41403adant3 1130 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) − 𝑇) = 𝑧)
4236, 41eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) = 𝑧)
43 simp2 1135 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → 𝑧𝐴)
4442, 43eqeltrd 2839 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) ∈ 𝐴)
45443exp 1117 . . . . . . . . . . . . . 14 (𝜑 → (𝑧𝐴 → (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴)))
4645adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝑧𝐴 → (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴)))
4746rexlimdv 3211 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → (∃𝑧𝐴 𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴))
4834, 47mpd 15 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏𝑇) ∈ 𝐴)
4919ssrab3 4011 . . . . . . . . . . . . . . 15 𝐵 ⊆ ℂ
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℂ)
5150sselda 3917 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → 𝑏 ∈ ℂ)
5238adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → 𝑇 ∈ ℂ)
5351, 52npcand 11266 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ((𝑏𝑇) + 𝑇) = 𝑏)
5453eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑏 = ((𝑏𝑇) + 𝑇))
55 oveq1 7262 . . . . . . . . . . . 12 (𝑥 = (𝑏𝑇) → (𝑥 + 𝑇) = ((𝑏𝑇) + 𝑇))
5655rspceeqv 3567 . . . . . . . . . . 11 (((𝑏𝑇) ∈ 𝐴𝑏 = ((𝑏𝑇) + 𝑇)) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
5748, 54, 56syl2anc 583 . . . . . . . . . 10 ((𝜑𝑏𝐵) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
5816, 17, 57syl2anc 583 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
59 nfv 1918 . . . . . . . . . . . 12 𝑥((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
60 nfrab1 3310 . . . . . . . . . . . . . 14 𝑥{𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
6119, 60nfcxfr 2904 . . . . . . . . . . . . 13 𝑥𝐵
6261nfcri 2893 . . . . . . . . . . . 12 𝑥 𝑏𝐵
6359, 62nfan 1903 . . . . . . . . . . 11 𝑥(((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵)
64 nfv 1918 . . . . . . . . . . 11 𝑥(𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)
6563, 64nfan 1903 . . . . . . . . . 10 𝑥((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧))
66 nfcv 2906 . . . . . . . . . . . 12 𝑥abs
67 nfcv 2906 . . . . . . . . . . . . . . 15 𝑥𝐹
6867, 61nfres 5882 . . . . . . . . . . . . . 14 𝑥(𝐹𝐵)
69 nfcv 2906 . . . . . . . . . . . . . 14 𝑥𝑏
7068, 69nffv 6766 . . . . . . . . . . . . 13 𝑥((𝐹𝐵)‘𝑏)
71 nfcv 2906 . . . . . . . . . . . . 13 𝑥
72 nfcv 2906 . . . . . . . . . . . . 13 𝑥𝐶
7370, 71, 72nfov 7285 . . . . . . . . . . . 12 𝑥(((𝐹𝐵)‘𝑏) − 𝐶)
7466, 73nffv 6766 . . . . . . . . . . 11 𝑥(abs‘(((𝐹𝐵)‘𝑏) − 𝐶))
75 nfcv 2906 . . . . . . . . . . 11 𝑥 <
76 nfcv 2906 . . . . . . . . . . 11 𝑥𝑤
7774, 75, 76nfbr 5117 . . . . . . . . . 10 𝑥(abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤
78 simp3 1136 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏 = (𝑥 + 𝑇))
7978fveq2d 6760 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘𝑏) = ((𝐹𝐵)‘(𝑥 + 𝑇)))
80173ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏𝐵)
8178, 80eqeltrrd 2840 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥 + 𝑇) ∈ 𝐵)
8281fvresd 6776 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘(𝑥 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
83163ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝜑)
84 simp2 1135 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥𝐴)
85 eleq1w 2821 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
8685anbi2d 628 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝜑𝑦𝐴) ↔ (𝜑𝑥𝐴)))
87 fvoveq1 7278 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
88 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
8987, 88eqeq12d 2754 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦) ↔ (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)))
9086, 89imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)) ↔ ((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))))
91 limcperiod.fper . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
9290, 91chvarvv 2003 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9383, 84, 92syl2anc 583 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9484fvresd 6776 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
9593, 94eqtr4d 2781 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = ((𝐹𝐴)‘𝑥))
9679, 82, 953eqtrd 2782 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘𝑏) = ((𝐹𝐴)‘𝑥))
9796fvoveq1d 7277 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) = (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)))
98 simpll3 1212 . . . . . . . . . . . . . . 15 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
99983ad2ant1 1131 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
10099, 84jca 511 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ∧ 𝑥𝐴))
101 simp1rl 1236 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏 ≠ (𝐷 + 𝑇))
102101neneqd 2947 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ¬ 𝑏 = (𝐷 + 𝑇))
103 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐷 → (𝑥 + 𝑇) = (𝐷 + 𝑇))
10478, 103sylan9eq 2799 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) ∧ 𝑥 = 𝐷) → 𝑏 = (𝐷 + 𝑇))
105102, 104mtand 812 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ¬ 𝑥 = 𝐷)
106105neqned 2949 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥𝐷)
10778oveq1d 7270 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑏 − (𝐷 + 𝑇)) = ((𝑥 + 𝑇) − (𝐷 + 𝑇)))
1087sselda 3917 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
10983, 84, 108syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥 ∈ ℂ)
11083, 10syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝐷 ∈ ℂ)
11183, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑇 ∈ ℂ)
112109, 110, 111pnpcan2d 11300 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝑥 + 𝑇) − (𝐷 + 𝑇)) = (𝑥𝐷))
113107, 112eqtr2d 2779 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥𝐷) = (𝑏 − (𝐷 + 𝑇)))
114113fveq2d 6760 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑥𝐷)) = (abs‘(𝑏 − (𝐷 + 𝑇))))
115 simp1rr 1237 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)
116114, 115eqbrtrd 5092 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑥𝐷)) < 𝑧)
117106, 116jca 511 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧))
118 neeq1 3005 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦𝐷𝑥𝐷))
119 fvoveq1 7278 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (abs‘(𝑦𝐷)) = (abs‘(𝑥𝐷)))
120119breq1d 5080 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((abs‘(𝑦𝐷)) < 𝑧 ↔ (abs‘(𝑥𝐷)) < 𝑧))
121118, 120anbi12d 630 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) ↔ (𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧)))
122121imbrov2fvoveq 7280 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ↔ ((𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤)))
123122rspccva 3551 . . . . . . . . . . . . 13 ((∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ∧ 𝑥𝐴) → ((𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤))
124100, 117, 123sylc 65 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤)
12597, 124eqbrtrd 5092 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)
1261253exp 1117 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (𝑥𝐴 → (𝑏 = (𝑥 + 𝑇) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)))
12765, 77, 126rexlimd 3245 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (∃𝑥𝐴 𝑏 = (𝑥 + 𝑇) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
12858, 127mpd 15 . . . . . . . 8 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)
129128ex 412 . . . . . . 7 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) → ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
130129ralrimiva 3107 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) → ∀𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
1311303exp 1117 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) → ∀𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))))
132131reximdvai 3199 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) → ∃𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)))
13314, 132mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
134133ralrimiva 3107 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
135 limcperiod.bss . . . 4 (𝜑𝐵 ⊆ dom 𝐹)
1364, 135fssresd 6625 . . 3 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
13710, 38addcld 10925 . . 3 (𝜑 → (𝐷 + 𝑇) ∈ ℂ)
138136, 50, 137ellimc3 24948 . 2 (𝜑 → (𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))))
1393, 134, 138mpbir2and 709 1 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883   class class class wbr 5070  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800   + caddc 10805   < clt 10940  cmin 11135  +crp 12659  abscabs 14873   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  fourierdlem48  43585  fourierdlem49  43586  fourierdlem81  43618  fourierdlem89  43626  fourierdlem91  43628  fourierdlem92  43629
  Copyright terms: Public domain W3C validator