Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcperiod Structured version   Visualization version   GIF version

Theorem limcperiod 41338
Description: If 𝐹 is a periodic function with period 𝑇, the limit doesn't change if we shift the limiting point by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcperiod.f (𝜑𝐹:dom 𝐹⟶ℂ)
limcperiod.assc (𝜑𝐴 ⊆ ℂ)
limcperiod.3 (𝜑𝐴 ⊆ dom 𝐹)
limcperiod.t (𝜑𝑇 ∈ ℂ)
limcperiod.b 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
limcperiod.bss (𝜑𝐵 ⊆ dom 𝐹)
limcperiod.fper ((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
limcperiod.clim (𝜑𝐶 ∈ ((𝐹𝐴) lim 𝐷))
Assertion
Ref Expression
limcperiod (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem limcperiod
Dummy variables 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 24176 . . 3 ((𝐹𝐴) lim 𝐷) ⊆ ℂ
2 limcperiod.clim . . 3 (𝜑𝐶 ∈ ((𝐹𝐴) lim 𝐷))
31, 2sseldi 3857 . 2 (𝜑𝐶 ∈ ℂ)
4 limcperiod.f . . . . . . . . 9 (𝜑𝐹:dom 𝐹⟶ℂ)
5 limcperiod.3 . . . . . . . . 9 (𝜑𝐴 ⊆ dom 𝐹)
64, 5fssresd 6374 . . . . . . . 8 (𝜑 → (𝐹𝐴):𝐴⟶ℂ)
7 limcperiod.assc . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
8 limcrcl 24175 . . . . . . . . . 10 (𝐶 ∈ ((𝐹𝐴) lim 𝐷) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐷 ∈ ℂ))
92, 8syl 17 . . . . . . . . 9 (𝜑 → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐷 ∈ ℂ))
109simp3d 1124 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
116, 7, 10ellimc3 24180 . . . . . . 7 (𝜑 → (𝐶 ∈ ((𝐹𝐴) lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))))
122, 11mpbid 224 . . . . . 6 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)))
1312simprd 488 . . . . 5 (𝜑 → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
1413r19.21bi 3159 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
15 simpl1l 1204 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) → 𝜑)
1615adantr 473 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → 𝜑)
17 simplr 756 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → 𝑏𝐵)
18 id 22 . . . . . . . . . . . . . . . 16 (𝑏𝐵𝑏𝐵)
19 limcperiod.b . . . . . . . . . . . . . . . . 17 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
20 oveq1 6983 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝑦 + 𝑇) = (𝑧 + 𝑇))
2120eqeq2d 2789 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑥 = (𝑦 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
2221cbvrexv 3385 . . . . . . . . . . . . . . . . . . 19 (∃𝑦𝐴 𝑥 = (𝑦 + 𝑇) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑇))
23 eqeq1 2783 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑤 = (𝑧 + 𝑇)))
2423rexbidv 3243 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (∃𝑧𝐴 𝑥 = (𝑧 + 𝑇) ↔ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)))
2522, 24syl5bb 275 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (∃𝑦𝐴 𝑥 = (𝑦 + 𝑇) ↔ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)))
2625cbvrabv 3413 . . . . . . . . . . . . . . . . 17 {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)}
2719, 26eqtri 2803 . . . . . . . . . . . . . . . 16 𝐵 = {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)}
2818, 27syl6eleq 2877 . . . . . . . . . . . . . . 15 (𝑏𝐵𝑏 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)})
29 eqeq1 2783 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑏 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑏 = (𝑧 + 𝑇)))
3029rexbidv 3243 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (∃𝑧𝐴 𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3130elrab 3596 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)} ↔ (𝑏 ∈ ℂ ∧ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3228, 31sylib 210 . . . . . . . . . . . . . 14 (𝑏𝐵 → (𝑏 ∈ ℂ ∧ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3332simprd 488 . . . . . . . . . . . . 13 (𝑏𝐵 → ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇))
3433adantl 474 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇))
35 oveq1 6983 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) = ((𝑧 + 𝑇) − 𝑇))
36353ad2ant3 1115 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) = ((𝑧 + 𝑇) − 𝑇))
377sselda 3859 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
38 limcperiod.t . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ∈ ℂ)
3938adantr 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → 𝑇 ∈ ℂ)
4037, 39pncand 10799 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐴) → ((𝑧 + 𝑇) − 𝑇) = 𝑧)
41403adant3 1112 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) − 𝑇) = 𝑧)
4236, 41eqtrd 2815 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) = 𝑧)
43 simp2 1117 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → 𝑧𝐴)
4442, 43eqeltrd 2867 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) ∈ 𝐴)
45443exp 1099 . . . . . . . . . . . . . 14 (𝜑 → (𝑧𝐴 → (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴)))
4645adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝑧𝐴 → (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴)))
4746rexlimdv 3229 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → (∃𝑧𝐴 𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴))
4834, 47mpd 15 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏𝑇) ∈ 𝐴)
4919ssrab3 3948 . . . . . . . . . . . . . . 15 𝐵 ⊆ ℂ
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℂ)
5150sselda 3859 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → 𝑏 ∈ ℂ)
5238adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → 𝑇 ∈ ℂ)
5351, 52npcand 10802 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ((𝑏𝑇) + 𝑇) = 𝑏)
5453eqcomd 2785 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑏 = ((𝑏𝑇) + 𝑇))
55 oveq1 6983 . . . . . . . . . . . 12 (𝑥 = (𝑏𝑇) → (𝑥 + 𝑇) = ((𝑏𝑇) + 𝑇))
5655rspceeqv 3554 . . . . . . . . . . 11 (((𝑏𝑇) ∈ 𝐴𝑏 = ((𝑏𝑇) + 𝑇)) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
5748, 54, 56syl2anc 576 . . . . . . . . . 10 ((𝜑𝑏𝐵) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
5816, 17, 57syl2anc 576 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
59 nfv 1873 . . . . . . . . . . . 12 𝑥((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
60 nfrab1 3325 . . . . . . . . . . . . . 14 𝑥{𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
6119, 60nfcxfr 2931 . . . . . . . . . . . . 13 𝑥𝐵
6261nfcri 2927 . . . . . . . . . . . 12 𝑥 𝑏𝐵
6359, 62nfan 1862 . . . . . . . . . . 11 𝑥(((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵)
64 nfv 1873 . . . . . . . . . . 11 𝑥(𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)
6563, 64nfan 1862 . . . . . . . . . 10 𝑥((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧))
66 nfcv 2933 . . . . . . . . . . . 12 𝑥abs
67 nfcv 2933 . . . . . . . . . . . . . . 15 𝑥𝐹
6867, 61nfres 5697 . . . . . . . . . . . . . 14 𝑥(𝐹𝐵)
69 nfcv 2933 . . . . . . . . . . . . . 14 𝑥𝑏
7068, 69nffv 6509 . . . . . . . . . . . . 13 𝑥((𝐹𝐵)‘𝑏)
71 nfcv 2933 . . . . . . . . . . . . 13 𝑥
72 nfcv 2933 . . . . . . . . . . . . 13 𝑥𝐶
7370, 71, 72nfov 7006 . . . . . . . . . . . 12 𝑥(((𝐹𝐵)‘𝑏) − 𝐶)
7466, 73nffv 6509 . . . . . . . . . . 11 𝑥(abs‘(((𝐹𝐵)‘𝑏) − 𝐶))
75 nfcv 2933 . . . . . . . . . . 11 𝑥 <
76 nfcv 2933 . . . . . . . . . . 11 𝑥𝑤
7774, 75, 76nfbr 4976 . . . . . . . . . 10 𝑥(abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤
78 simp3 1118 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏 = (𝑥 + 𝑇))
7978fveq2d 6503 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘𝑏) = ((𝐹𝐵)‘(𝑥 + 𝑇)))
80173ad2ant1 1113 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏𝐵)
8178, 80eqeltrrd 2868 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥 + 𝑇) ∈ 𝐵)
8281fvresd 6519 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘(𝑥 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
83163ad2ant1 1113 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝜑)
84 simp2 1117 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥𝐴)
85 eleq1w 2849 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
8685anbi2d 619 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝜑𝑦𝐴) ↔ (𝜑𝑥𝐴)))
87 fvoveq1 6999 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
88 fveq2 6499 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
8987, 88eqeq12d 2794 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦) ↔ (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)))
9086, 89imbi12d 337 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)) ↔ ((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))))
91 limcperiod.fper . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
9290, 91chvarv 2327 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9383, 84, 92syl2anc 576 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9484fvresd 6519 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
9593, 94eqtr4d 2818 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = ((𝐹𝐴)‘𝑥))
9679, 82, 953eqtrd 2819 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘𝑏) = ((𝐹𝐴)‘𝑥))
9796fvoveq1d 6998 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) = (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)))
98 simpll3 1194 . . . . . . . . . . . . . . 15 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
99983ad2ant1 1113 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
10099, 84jca 504 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ∧ 𝑥𝐴))
101 simp1rl 1218 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏 ≠ (𝐷 + 𝑇))
102101neneqd 2973 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ¬ 𝑏 = (𝐷 + 𝑇))
103 oveq1 6983 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐷 → (𝑥 + 𝑇) = (𝐷 + 𝑇))
10478, 103sylan9eq 2835 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) ∧ 𝑥 = 𝐷) → 𝑏 = (𝐷 + 𝑇))
105102, 104mtand 803 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ¬ 𝑥 = 𝐷)
106105neqned 2975 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥𝐷)
10778oveq1d 6991 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑏 − (𝐷 + 𝑇)) = ((𝑥 + 𝑇) − (𝐷 + 𝑇)))
1087sselda 3859 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
10983, 84, 108syl2anc 576 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥 ∈ ℂ)
11083, 10syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝐷 ∈ ℂ)
11183, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑇 ∈ ℂ)
112109, 110, 111pnpcan2d 10836 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝑥 + 𝑇) − (𝐷 + 𝑇)) = (𝑥𝐷))
113107, 112eqtr2d 2816 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥𝐷) = (𝑏 − (𝐷 + 𝑇)))
114113fveq2d 6503 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑥𝐷)) = (abs‘(𝑏 − (𝐷 + 𝑇))))
115 simp1rr 1219 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)
116114, 115eqbrtrd 4951 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑥𝐷)) < 𝑧)
117106, 116jca 504 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧))
118 neeq1 3030 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦𝐷𝑥𝐷))
119 fvoveq1 6999 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (abs‘(𝑦𝐷)) = (abs‘(𝑥𝐷)))
120119breq1d 4939 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((abs‘(𝑦𝐷)) < 𝑧 ↔ (abs‘(𝑥𝐷)) < 𝑧))
121118, 120anbi12d 621 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) ↔ (𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧)))
122121imbrov2fvoveq 7001 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ↔ ((𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤)))
123122rspccva 3535 . . . . . . . . . . . . 13 ((∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ∧ 𝑥𝐴) → ((𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤))
124100, 117, 123sylc 65 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤)
12597, 124eqbrtrd 4951 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)
1261253exp 1099 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (𝑥𝐴 → (𝑏 = (𝑥 + 𝑇) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)))
12765, 77, 126rexlimd 3261 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (∃𝑥𝐴 𝑏 = (𝑥 + 𝑇) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
12858, 127mpd 15 . . . . . . . 8 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)
129128ex 405 . . . . . . 7 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) → ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
130129ralrimiva 3133 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) → ∀𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
1311303exp 1099 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) → ∀𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))))
132131reximdvai 3218 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) → ∃𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)))
13314, 132mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
134133ralrimiva 3133 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
135 limcperiod.bss . . . 4 (𝜑𝐵 ⊆ dom 𝐹)
1364, 135fssresd 6374 . . 3 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
13710, 38addcld 10459 . . 3 (𝜑 → (𝐷 + 𝑇) ∈ ℂ)
138136, 50, 137ellimc3 24180 . 2 (𝜑 → (𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))))
1393, 134, 138mpbir2and 700 1 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2968  wral 3089  wrex 3090  {crab 3093  wss 3830   class class class wbr 4929  dom cdm 5407  cres 5409  wf 6184  cfv 6188  (class class class)co 6976  cc 10333   + caddc 10338   < clt 10474  cmin 10670  +crp 12204  abscabs 14454   lim climc 24163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fi 8670  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-fz 12709  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-plusg 16434  df-mulr 16435  df-starv 16436  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-rest 16552  df-topn 16553  df-topgen 16573  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cnp 21540  df-xms 22633  df-ms 22634  df-limc 24167
This theorem is referenced by:  fourierdlem48  41868  fourierdlem49  41869  fourierdlem81  41901  fourierdlem89  41909  fourierdlem91  41911  fourierdlem92  41912
  Copyright terms: Public domain W3C validator