Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcperiod Structured version   Visualization version   GIF version

Theorem limcperiod 41916
Description: If 𝐹 is a periodic function with period 𝑇, the limit doesn't change if we shift the limiting point by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcperiod.f (𝜑𝐹:dom 𝐹⟶ℂ)
limcperiod.assc (𝜑𝐴 ⊆ ℂ)
limcperiod.3 (𝜑𝐴 ⊆ dom 𝐹)
limcperiod.t (𝜑𝑇 ∈ ℂ)
limcperiod.b 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
limcperiod.bss (𝜑𝐵 ⊆ dom 𝐹)
limcperiod.fper ((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
limcperiod.clim (𝜑𝐶 ∈ ((𝐹𝐴) lim 𝐷))
Assertion
Ref Expression
limcperiod (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem limcperiod
Dummy variables 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 24475 . . 3 ((𝐹𝐴) lim 𝐷) ⊆ ℂ
2 limcperiod.clim . . 3 (𝜑𝐶 ∈ ((𝐹𝐴) lim 𝐷))
31, 2sseldi 3967 . 2 (𝜑𝐶 ∈ ℂ)
4 limcperiod.f . . . . . . . . 9 (𝜑𝐹:dom 𝐹⟶ℂ)
5 limcperiod.3 . . . . . . . . 9 (𝜑𝐴 ⊆ dom 𝐹)
64, 5fssresd 6547 . . . . . . . 8 (𝜑 → (𝐹𝐴):𝐴⟶ℂ)
7 limcperiod.assc . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
8 limcrcl 24474 . . . . . . . . . 10 (𝐶 ∈ ((𝐹𝐴) lim 𝐷) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐷 ∈ ℂ))
92, 8syl 17 . . . . . . . . 9 (𝜑 → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐷 ∈ ℂ))
109simp3d 1140 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
116, 7, 10ellimc3 24479 . . . . . . 7 (𝜑 → (𝐶 ∈ ((𝐹𝐴) lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))))
122, 11mpbid 234 . . . . . 6 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)))
1312simprd 498 . . . . 5 (𝜑 → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
1413r19.21bi 3210 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
15 simpl1l 1220 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) → 𝜑)
1615adantr 483 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → 𝜑)
17 simplr 767 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → 𝑏𝐵)
18 id 22 . . . . . . . . . . . . . . . 16 (𝑏𝐵𝑏𝐵)
19 limcperiod.b . . . . . . . . . . . . . . . . 17 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
20 oveq1 7165 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝑦 + 𝑇) = (𝑧 + 𝑇))
2120eqeq2d 2834 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑥 = (𝑦 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
2221cbvrexvw 3452 . . . . . . . . . . . . . . . . . . 19 (∃𝑦𝐴 𝑥 = (𝑦 + 𝑇) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑇))
23 eqeq1 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑤 = (𝑧 + 𝑇)))
2423rexbidv 3299 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (∃𝑧𝐴 𝑥 = (𝑧 + 𝑇) ↔ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)))
2522, 24syl5bb 285 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (∃𝑦𝐴 𝑥 = (𝑦 + 𝑇) ↔ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)))
2625cbvrabv 3493 . . . . . . . . . . . . . . . . 17 {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)}
2719, 26eqtri 2846 . . . . . . . . . . . . . . . 16 𝐵 = {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)}
2818, 27eleqtrdi 2925 . . . . . . . . . . . . . . 15 (𝑏𝐵𝑏 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)})
29 eqeq1 2827 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑏 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑏 = (𝑧 + 𝑇)))
3029rexbidv 3299 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (∃𝑧𝐴 𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3130elrab 3682 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧𝐴 𝑤 = (𝑧 + 𝑇)} ↔ (𝑏 ∈ ℂ ∧ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3228, 31sylib 220 . . . . . . . . . . . . . 14 (𝑏𝐵 → (𝑏 ∈ ℂ ∧ ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇)))
3332simprd 498 . . . . . . . . . . . . 13 (𝑏𝐵 → ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇))
3433adantl 484 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ∃𝑧𝐴 𝑏 = (𝑧 + 𝑇))
35 oveq1 7165 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) = ((𝑧 + 𝑇) − 𝑇))
36353ad2ant3 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) = ((𝑧 + 𝑇) − 𝑇))
377sselda 3969 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
38 limcperiod.t . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ∈ ℂ)
3938adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → 𝑇 ∈ ℂ)
4037, 39pncand 11000 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐴) → ((𝑧 + 𝑇) − 𝑇) = 𝑧)
41403adant3 1128 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) − 𝑇) = 𝑧)
4236, 41eqtrd 2858 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) = 𝑧)
43 simp2 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → 𝑧𝐴)
4442, 43eqeltrd 2915 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴𝑏 = (𝑧 + 𝑇)) → (𝑏𝑇) ∈ 𝐴)
45443exp 1115 . . . . . . . . . . . . . 14 (𝜑 → (𝑧𝐴 → (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴)))
4645adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → (𝑧𝐴 → (𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴)))
4746rexlimdv 3285 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → (∃𝑧𝐴 𝑏 = (𝑧 + 𝑇) → (𝑏𝑇) ∈ 𝐴))
4834, 47mpd 15 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑏𝑇) ∈ 𝐴)
4919ssrab3 4059 . . . . . . . . . . . . . . 15 𝐵 ⊆ ℂ
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℂ)
5150sselda 3969 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → 𝑏 ∈ ℂ)
5238adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → 𝑇 ∈ ℂ)
5351, 52npcand 11003 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ((𝑏𝑇) + 𝑇) = 𝑏)
5453eqcomd 2829 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑏 = ((𝑏𝑇) + 𝑇))
55 oveq1 7165 . . . . . . . . . . . 12 (𝑥 = (𝑏𝑇) → (𝑥 + 𝑇) = ((𝑏𝑇) + 𝑇))
5655rspceeqv 3640 . . . . . . . . . . 11 (((𝑏𝑇) ∈ 𝐴𝑏 = ((𝑏𝑇) + 𝑇)) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
5748, 54, 56syl2anc 586 . . . . . . . . . 10 ((𝜑𝑏𝐵) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
5816, 17, 57syl2anc 586 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → ∃𝑥𝐴 𝑏 = (𝑥 + 𝑇))
59 nfv 1915 . . . . . . . . . . . 12 𝑥((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
60 nfrab1 3386 . . . . . . . . . . . . . 14 𝑥{𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
6119, 60nfcxfr 2977 . . . . . . . . . . . . 13 𝑥𝐵
6261nfcri 2973 . . . . . . . . . . . 12 𝑥 𝑏𝐵
6359, 62nfan 1900 . . . . . . . . . . 11 𝑥(((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵)
64 nfv 1915 . . . . . . . . . . 11 𝑥(𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)
6563, 64nfan 1900 . . . . . . . . . 10 𝑥((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧))
66 nfcv 2979 . . . . . . . . . . . 12 𝑥abs
67 nfcv 2979 . . . . . . . . . . . . . . 15 𝑥𝐹
6867, 61nfres 5857 . . . . . . . . . . . . . 14 𝑥(𝐹𝐵)
69 nfcv 2979 . . . . . . . . . . . . . 14 𝑥𝑏
7068, 69nffv 6682 . . . . . . . . . . . . 13 𝑥((𝐹𝐵)‘𝑏)
71 nfcv 2979 . . . . . . . . . . . . 13 𝑥
72 nfcv 2979 . . . . . . . . . . . . 13 𝑥𝐶
7370, 71, 72nfov 7188 . . . . . . . . . . . 12 𝑥(((𝐹𝐵)‘𝑏) − 𝐶)
7466, 73nffv 6682 . . . . . . . . . . 11 𝑥(abs‘(((𝐹𝐵)‘𝑏) − 𝐶))
75 nfcv 2979 . . . . . . . . . . 11 𝑥 <
76 nfcv 2979 . . . . . . . . . . 11 𝑥𝑤
7774, 75, 76nfbr 5115 . . . . . . . . . 10 𝑥(abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤
78 simp3 1134 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏 = (𝑥 + 𝑇))
7978fveq2d 6676 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘𝑏) = ((𝐹𝐵)‘(𝑥 + 𝑇)))
80173ad2ant1 1129 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏𝐵)
8178, 80eqeltrrd 2916 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥 + 𝑇) ∈ 𝐵)
8281fvresd 6692 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘(𝑥 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
83163ad2ant1 1129 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝜑)
84 simp2 1133 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥𝐴)
85 eleq1w 2897 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
8685anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝜑𝑦𝐴) ↔ (𝜑𝑥𝐴)))
87 fvoveq1 7181 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
88 fveq2 6672 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
8987, 88eqeq12d 2839 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦) ↔ (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)))
9086, 89imbi12d 347 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)) ↔ ((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))))
91 limcperiod.fper . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
9290, 91chvarvv 2005 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9383, 84, 92syl2anc 586 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9484fvresd 6692 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
9593, 94eqtr4d 2861 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = ((𝐹𝐴)‘𝑥))
9679, 82, 953eqtrd 2862 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝐹𝐵)‘𝑏) = ((𝐹𝐴)‘𝑥))
9796fvoveq1d 7180 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) = (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)))
98 simpll3 1210 . . . . . . . . . . . . . . 15 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
99983ad2ant1 1129 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤))
10099, 84jca 514 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ∧ 𝑥𝐴))
101 simp1rl 1234 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑏 ≠ (𝐷 + 𝑇))
102101neneqd 3023 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ¬ 𝑏 = (𝐷 + 𝑇))
103 oveq1 7165 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐷 → (𝑥 + 𝑇) = (𝐷 + 𝑇))
10478, 103sylan9eq 2878 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) ∧ 𝑥 = 𝐷) → 𝑏 = (𝐷 + 𝑇))
105102, 104mtand 814 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ¬ 𝑥 = 𝐷)
106105neqned 3025 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥𝐷)
10778oveq1d 7173 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑏 − (𝐷 + 𝑇)) = ((𝑥 + 𝑇) − (𝐷 + 𝑇)))
1087sselda 3969 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
10983, 84, 108syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑥 ∈ ℂ)
11083, 10syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝐷 ∈ ℂ)
11183, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → 𝑇 ∈ ℂ)
112109, 110, 111pnpcan2d 11037 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → ((𝑥 + 𝑇) − (𝐷 + 𝑇)) = (𝑥𝐷))
113107, 112eqtr2d 2859 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥𝐷) = (𝑏 − (𝐷 + 𝑇)))
114113fveq2d 6676 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑥𝐷)) = (abs‘(𝑏 − (𝐷 + 𝑇))))
115 simp1rr 1235 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)
116114, 115eqbrtrd 5090 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(𝑥𝐷)) < 𝑧)
117106, 116jca 514 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧))
118 neeq1 3080 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦𝐷𝑥𝐷))
119 fvoveq1 7181 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (abs‘(𝑦𝐷)) = (abs‘(𝑥𝐷)))
120119breq1d 5078 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((abs‘(𝑦𝐷)) < 𝑧 ↔ (abs‘(𝑥𝐷)) < 𝑧))
121118, 120anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) ↔ (𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧)))
122121imbrov2fvoveq 7183 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ↔ ((𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤)))
123122rspccva 3624 . . . . . . . . . . . . 13 ((∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) ∧ 𝑥𝐴) → ((𝑥𝐷 ∧ (abs‘(𝑥𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤))
124100, 117, 123sylc 65 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐴)‘𝑥) − 𝐶)) < 𝑤)
12597, 124eqbrtrd 5090 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) ∧ 𝑥𝐴𝑏 = (𝑥 + 𝑇)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)
1261253exp 1115 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (𝑥𝐴 → (𝑏 = (𝑥 + 𝑇) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)))
12765, 77, 126rexlimd 3319 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (∃𝑥𝐴 𝑏 = (𝑥 + 𝑇) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
12858, 127mpd 15 . . . . . . . 8 (((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) ∧ (𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧)) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)
129128ex 415 . . . . . . 7 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) ∧ 𝑏𝐵) → ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
130129ralrimiva 3184 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤)) → ∀𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
1311303exp 1115 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (𝑧 ∈ ℝ+ → (∀𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) → ∀𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))))
132131reximdvai 3274 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑧 ∈ ℝ+𝑦𝐴 ((𝑦𝐷 ∧ (abs‘(𝑦𝐷)) < 𝑧) → (abs‘(((𝐹𝐴)‘𝑦) − 𝐶)) < 𝑤) → ∃𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤)))
13314, 132mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
134133ralrimiva 3184 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))
135 limcperiod.bss . . . 4 (𝜑𝐵 ⊆ dom 𝐹)
1364, 135fssresd 6547 . . 3 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
13710, 38addcld 10662 . . 3 (𝜑 → (𝐷 + 𝑇) ∈ ℂ)
138136, 50, 137ellimc3 24479 . 2 (𝜑 → (𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐵 ((𝑏 ≠ (𝐷 + 𝑇) ∧ (abs‘(𝑏 − (𝐷 + 𝑇))) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑏) − 𝐶)) < 𝑤))))
1393, 134, 138mpbir2and 711 1 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝐷 + 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  wss 3938   class class class wbr 5068  dom cdm 5557  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  cc 10537   + caddc 10542   < clt 10677  cmin 10872  +crp 12392  abscabs 14595   lim climc 24462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-rest 16698  df-topn 16699  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cnp 21838  df-xms 22932  df-ms 22933  df-limc 24466
This theorem is referenced by:  fourierdlem48  42446  fourierdlem49  42447  fourierdlem81  42479  fourierdlem89  42487  fourierdlem91  42489  fourierdlem92  42490
  Copyright terms: Public domain W3C validator