MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltnle Structured version   Visualization version   GIF version

Theorem sltnle 27637
Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sltnle ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴))

Proof of Theorem sltnle
StepHypRef Expression
1 slenlt 27636 . . 3 ((𝐵 No 𝐴 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
21ancoms 458 . 2 ((𝐴 No 𝐵 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
32con2bid 354 1 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2098   class class class wbr 5141   No csur 27524   <s cslt 27525   ≤s csle 27628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-cnv 5677  df-sle 27629
This theorem is referenced by:  sletric  27648  slerec  27703  sltrec  27704  cutlt  27803  sleadd1im  27855  sleadd1  27857  sltadd2  27859  abssnid  28088
  Copyright terms: Public domain W3C validator