| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltnle | Structured version Visualization version GIF version | ||
| Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| sltnle | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slenlt 27691 | . . 3 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
| 3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 No csur 27578 <s cslt 27579 ≤s csle 27683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-sle 27684 |
| This theorem is referenced by: sletric 27703 slerec 27760 sltrec 27762 eqscut3 27765 cutlt 27876 sleadd1im 27930 sleadd1 27932 sltadd2 27934 abssnid 28181 |
| Copyright terms: Public domain | W3C validator |