Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltnle Structured version   Visualization version   GIF version

Theorem sltnle 33883
Description: Surreal less than in terms of less than or equal. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sltnle ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴))

Proof of Theorem sltnle
StepHypRef Expression
1 slenlt 33882 . . 3 ((𝐵 No 𝐴 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
21ancoms 458 . 2 ((𝐴 No 𝐵 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
32con2bid 354 1 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108   class class class wbr 5070   No csur 33770   <s cslt 33771   ≤s csle 33874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-sle 33875
This theorem is referenced by:  slerec  33940  sltrec  33941
  Copyright terms: Public domain W3C validator