Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sltnle | Structured version Visualization version GIF version |
Description: Surreal less than in terms of less than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sltnle | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt 33882 | . . 3 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 No csur 33770 <s cslt 33771 ≤s csle 33874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-sle 33875 |
This theorem is referenced by: slerec 33940 sltrec 33941 |
Copyright terms: Public domain | W3C validator |