MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltnle Structured version   Visualization version   GIF version

Theorem sltnle 27665
Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sltnle ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴))

Proof of Theorem sltnle
StepHypRef Expression
1 slenlt 27664 . . 3 ((𝐵 No 𝐴 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
21ancoms 458 . 2 ((𝐴 No 𝐵 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
32con2bid 354 1 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107   No csur 27551   <s cslt 27552   ≤s csle 27656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-sle 27657
This theorem is referenced by:  sletric  27676  slerec  27731  sltrec  27732  cutlt  27840  sleadd1im  27894  sleadd1  27896  sltadd2  27898  abssnid  28145
  Copyright terms: Public domain W3C validator