| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltadd2 | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| sltadd2 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sleadd2 27897 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐴 ↔ (𝐶 +s 𝐵) ≤s (𝐶 +s 𝐴))) | |
| 2 | 1 | 3com12 1123 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐴 ↔ (𝐶 +s 𝐵) ≤s (𝐶 +s 𝐴))) |
| 3 | 2 | notbid 318 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (¬ 𝐵 ≤s 𝐴 ↔ ¬ (𝐶 +s 𝐵) ≤s (𝐶 +s 𝐴))) |
| 4 | sltnle 27665 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) | |
| 5 | 4 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) |
| 6 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) | |
| 7 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) | |
| 8 | 6, 7 | addscld 27887 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐶 +s 𝐴) ∈ No ) |
| 9 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) | |
| 10 | 6, 9 | addscld 27887 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐶 +s 𝐵) ∈ No ) |
| 11 | sltnle 27665 | . . 3 ⊢ (((𝐶 +s 𝐴) ∈ No ∧ (𝐶 +s 𝐵) ∈ No ) → ((𝐶 +s 𝐴) <s (𝐶 +s 𝐵) ↔ ¬ (𝐶 +s 𝐵) ≤s (𝐶 +s 𝐴))) | |
| 12 | 8, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 +s 𝐴) <s (𝐶 +s 𝐵) ↔ ¬ (𝐶 +s 𝐵) ≤s (𝐶 +s 𝐴))) |
| 13 | 3, 5, 12 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 No csur 27551 <s cslt 27552 ≤s csle 27656 +s cadds 27866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec2 27856 df-adds 27867 |
| This theorem is referenced by: sltadd1 27899 sltadd2d 27904 |
| Copyright terms: Public domain | W3C validator |