Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltrec Structured version   Visualization version   GIF version

Theorem sltrec 33941
Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
sltrec (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
Distinct variable groups:   𝐴,𝑏,𝑐   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐   𝐷,𝑏,𝑐   𝑋,𝑏,𝑐   𝑌,𝑏,𝑐

Proof of Theorem sltrec
StepHypRef Expression
1 simplr 765 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 <<s 𝐷)
2 simpll 763 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐴 <<s 𝐵)
3 simprr 769 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 = (𝐶 |s 𝐷))
4 simprl 767 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 = (𝐴 |s 𝐵))
5 slerec 33940 . . . . 5 (((𝐶 <<s 𝐷𝐴 <<s 𝐵) ∧ (𝑌 = (𝐶 |s 𝐷) ∧ 𝑋 = (𝐴 |s 𝐵))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋)))
61, 2, 3, 4, 5syl22anc 835 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋)))
7 ancom 460 . . . 4 ((∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋) ↔ (∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏))
86, 7bitrdi 286 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏)))
9 scutcut 33922 . . . . . . 7 (𝐶 <<s 𝐷 → ((𝐶 |s 𝐷) ∈ No 𝐶 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐷))
109simp1d 1140 . . . . . 6 (𝐶 <<s 𝐷 → (𝐶 |s 𝐷) ∈ No )
1110ad2antlr 723 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐶 |s 𝐷) ∈ No )
123, 11eqeltrd 2839 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 No )
13 scutcut 33922 . . . . . . 7 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
1413simp1d 1140 . . . . . 6 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No )
1514ad2antrr 722 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ∈ No )
164, 15eqeltrd 2839 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 No )
17 slenlt 33882 . . . 4 ((𝑌 No 𝑋 No ) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌))
1812, 16, 17syl2anc 583 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌))
19 ssltss1 33910 . . . . . . . . 9 (𝐶 <<s 𝐷𝐶 No )
2019ad2antlr 723 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 No )
2120sselda 3917 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → 𝑐 No )
2216adantr 480 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → 𝑋 No )
23 sltnle 33883 . . . . . . 7 ((𝑐 No 𝑋 No ) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐))
2421, 22, 23syl2anc 583 . . . . . 6 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐))
2524ralbidva 3119 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑐𝐶 𝑐 <s 𝑋 ↔ ∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐))
2612adantr 480 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → 𝑌 No )
27 ssltss2 33911 . . . . . . . . 9 (𝐴 <<s 𝐵𝐵 No )
2827ad2antrr 722 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐵 No )
2928sselda 3917 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → 𝑏 No )
30 sltnle 33883 . . . . . . 7 ((𝑌 No 𝑏 No ) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌))
3126, 29, 30syl2anc 583 . . . . . 6 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌))
3231ralbidva 3119 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑏𝐵 𝑌 <s 𝑏 ↔ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌))
3325, 32anbi12d 630 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏) ↔ (∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌)))
34 ralnex 3163 . . . . . 6 (∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ↔ ¬ ∃𝑐𝐶 𝑋 ≤s 𝑐)
35 ralnex 3163 . . . . . 6 (∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌 ↔ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌)
3634, 35anbi12i 626 . . . . 5 ((∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌))
37 ioran 980 . . . . 5 (¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌))
3836, 37bitr4i 277 . . . 4 ((∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌) ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌))
3933, 38bitrdi 286 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏) ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
408, 18, 393bitr3d 308 . 2 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (¬ 𝑋 <s 𝑌 ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
4140con4bid 316 1 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  {csn 4558   class class class wbr 5070  (class class class)co 7255   No csur 33770   <s cslt 33771   ≤s csle 33874   <<s csslt 33902   |s cscut 33904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sle 33875  df-sslt 33903  df-scut 33905
This theorem is referenced by:  0slt1s  33950  sltn0  34012
  Copyright terms: Public domain W3C validator