Proof of Theorem sltrec
| Step | Hyp | Ref
| Expression |
| 1 | | simplr 768 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 <<s 𝐷) |
| 2 | | simpll 766 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐴 <<s 𝐵) |
| 3 | | simprr 772 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 = (𝐶 |s 𝐷)) |
| 4 | | simprl 770 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 = (𝐴 |s 𝐵)) |
| 5 | 1, 2, 3, 4 | slerecd 27766 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏 ∈ 𝐵 𝑌 <s 𝑏 ∧ ∀𝑐 ∈ 𝐶 𝑐 <s 𝑋))) |
| 6 | | ancom 460 |
. . . 4
⊢
((∀𝑏 ∈
𝐵 𝑌 <s 𝑏 ∧ ∀𝑐 ∈ 𝐶 𝑐 <s 𝑋) ↔ (∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀𝑏 ∈ 𝐵 𝑌 <s 𝑏)) |
| 7 | 5, 6 | bitrdi 287 |
. . 3
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀𝑏 ∈ 𝐵 𝑌 <s 𝑏))) |
| 8 | | scutcut 27747 |
. . . . . . 7
⊢ (𝐶 <<s 𝐷 → ((𝐶 |s 𝐷) ∈ No
∧ 𝐶 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐷)) |
| 9 | 8 | simp1d 1142 |
. . . . . 6
⊢ (𝐶 <<s 𝐷 → (𝐶 |s 𝐷) ∈ No
) |
| 10 | 9 | ad2antlr 727 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐶 |s 𝐷) ∈ No
) |
| 11 | 3, 10 | eqeltrd 2828 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 ∈ No
) |
| 12 | | scutcut 27747 |
. . . . . . 7
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 13 | 12 | simp1d 1142 |
. . . . . 6
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No
) |
| 14 | 13 | ad2antrr 726 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ∈ No
) |
| 15 | 4, 14 | eqeltrd 2828 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 ∈ No
) |
| 16 | | slenlt 27697 |
. . . 4
⊢ ((𝑌 ∈
No ∧ 𝑋 ∈
No ) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌)) |
| 17 | 11, 15, 16 | syl2anc 584 |
. . 3
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌)) |
| 18 | | ssltss1 27734 |
. . . . . . . . 9
⊢ (𝐶 <<s 𝐷 → 𝐶 ⊆ No
) |
| 19 | 18 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 ⊆ No
) |
| 20 | 19 | sselda 3943 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ No
) |
| 21 | 15 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐 ∈ 𝐶) → 𝑋 ∈ No
) |
| 22 | | sltnle 27698 |
. . . . . . 7
⊢ ((𝑐 ∈
No ∧ 𝑋 ∈
No ) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐)) |
| 23 | 20, 21, 22 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐 ∈ 𝐶) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐)) |
| 24 | 23 | ralbidva 3154 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ↔ ∀𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐)) |
| 25 | 11 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏 ∈ 𝐵) → 𝑌 ∈ No
) |
| 26 | | ssltss2 27735 |
. . . . . . . . 9
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No
) |
| 27 | 26 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐵 ⊆ No
) |
| 28 | 27 | sselda 3943 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ No
) |
| 29 | | sltnle 27698 |
. . . . . . 7
⊢ ((𝑌 ∈
No ∧ 𝑏 ∈
No ) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌)) |
| 30 | 25, 28, 29 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏 ∈ 𝐵) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌)) |
| 31 | 30 | ralbidva 3154 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑏 ∈ 𝐵 𝑌 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌)) |
| 32 | 24, 31 | anbi12d 632 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀𝑏 ∈ 𝐵 𝑌 <s 𝑏) ↔ (∀𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌))) |
| 33 | | ralnex 3055 |
. . . . . 6
⊢
(∀𝑐 ∈
𝐶 ¬ 𝑋 ≤s 𝑐 ↔ ¬ ∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐) |
| 34 | | ralnex 3055 |
. . . . . 6
⊢
(∀𝑏 ∈
𝐵 ¬ 𝑏 ≤s 𝑌 ↔ ¬ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌) |
| 35 | 33, 34 | anbi12i 628 |
. . . . 5
⊢
((∀𝑐 ∈
𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌)) |
| 36 | | ioran 985 |
. . . . 5
⊢ (¬
(∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌)) |
| 37 | 35, 36 | bitr4i 278 |
. . . 4
⊢
((∀𝑐 ∈
𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌) ↔ ¬ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌)) |
| 38 | 32, 37 | bitrdi 287 |
. . 3
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀𝑏 ∈ 𝐵 𝑌 <s 𝑏) ↔ ¬ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) |
| 39 | 7, 17, 38 | 3bitr3d 309 |
. 2
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (¬ 𝑋 <s 𝑌 ↔ ¬ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) |
| 40 | 39 | con4bid 317 |
1
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) |