Proof of Theorem sltrec
Step | Hyp | Ref
| Expression |
1 | | simplr 766 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 <<s 𝐷) |
2 | | simpll 764 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐴 <<s 𝐵) |
3 | | simprr 770 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 = (𝐶 |s 𝐷)) |
4 | | simprl 768 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 = (𝐴 |s 𝐵)) |
5 | | slerec 34013 |
. . . . 5
⊢ (((𝐶 <<s 𝐷 ∧ 𝐴 <<s 𝐵) ∧ (𝑌 = (𝐶 |s 𝐷) ∧ 𝑋 = (𝐴 |s 𝐵))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏 ∈ 𝐵 𝑌 <s 𝑏 ∧ ∀𝑐 ∈ 𝐶 𝑐 <s 𝑋))) |
6 | 1, 2, 3, 4, 5 | syl22anc 836 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏 ∈ 𝐵 𝑌 <s 𝑏 ∧ ∀𝑐 ∈ 𝐶 𝑐 <s 𝑋))) |
7 | | ancom 461 |
. . . 4
⊢
((∀𝑏 ∈
𝐵 𝑌 <s 𝑏 ∧ ∀𝑐 ∈ 𝐶 𝑐 <s 𝑋) ↔ (∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀𝑏 ∈ 𝐵 𝑌 <s 𝑏)) |
8 | 6, 7 | bitrdi 287 |
. . 3
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀𝑏 ∈ 𝐵 𝑌 <s 𝑏))) |
9 | | scutcut 33995 |
. . . . . . 7
⊢ (𝐶 <<s 𝐷 → ((𝐶 |s 𝐷) ∈ No
∧ 𝐶 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐷)) |
10 | 9 | simp1d 1141 |
. . . . . 6
⊢ (𝐶 <<s 𝐷 → (𝐶 |s 𝐷) ∈ No
) |
11 | 10 | ad2antlr 724 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐶 |s 𝐷) ∈ No
) |
12 | 3, 11 | eqeltrd 2839 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 ∈ No
) |
13 | | scutcut 33995 |
. . . . . . 7
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
14 | 13 | simp1d 1141 |
. . . . . 6
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No
) |
15 | 14 | ad2antrr 723 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ∈ No
) |
16 | 4, 15 | eqeltrd 2839 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 ∈ No
) |
17 | | slenlt 33955 |
. . . 4
⊢ ((𝑌 ∈
No ∧ 𝑋 ∈
No ) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌)) |
18 | 12, 16, 17 | syl2anc 584 |
. . 3
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌)) |
19 | | ssltss1 33983 |
. . . . . . . . 9
⊢ (𝐶 <<s 𝐷 → 𝐶 ⊆ No
) |
20 | 19 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 ⊆ No
) |
21 | 20 | sselda 3921 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ No
) |
22 | 16 | adantr 481 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐 ∈ 𝐶) → 𝑋 ∈ No
) |
23 | | sltnle 33956 |
. . . . . . 7
⊢ ((𝑐 ∈
No ∧ 𝑋 ∈
No ) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐)) |
24 | 21, 22, 23 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐 ∈ 𝐶) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐)) |
25 | 24 | ralbidva 3111 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ↔ ∀𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐)) |
26 | 12 | adantr 481 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏 ∈ 𝐵) → 𝑌 ∈ No
) |
27 | | ssltss2 33984 |
. . . . . . . . 9
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No
) |
28 | 27 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐵 ⊆ No
) |
29 | 28 | sselda 3921 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ No
) |
30 | | sltnle 33956 |
. . . . . . 7
⊢ ((𝑌 ∈
No ∧ 𝑏 ∈
No ) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌)) |
31 | 26, 29, 30 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏 ∈ 𝐵) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌)) |
32 | 31 | ralbidva 3111 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑏 ∈ 𝐵 𝑌 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌)) |
33 | 25, 32 | anbi12d 631 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀𝑏 ∈ 𝐵 𝑌 <s 𝑏) ↔ (∀𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌))) |
34 | | ralnex 3167 |
. . . . . 6
⊢
(∀𝑐 ∈
𝐶 ¬ 𝑋 ≤s 𝑐 ↔ ¬ ∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐) |
35 | | ralnex 3167 |
. . . . . 6
⊢
(∀𝑏 ∈
𝐵 ¬ 𝑏 ≤s 𝑌 ↔ ¬ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌) |
36 | 34, 35 | anbi12i 627 |
. . . . 5
⊢
((∀𝑐 ∈
𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌)) |
37 | | ioran 981 |
. . . . 5
⊢ (¬
(∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌)) |
38 | 36, 37 | bitr4i 277 |
. . . 4
⊢
((∀𝑐 ∈
𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌) ↔ ¬ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌)) |
39 | 33, 38 | bitrdi 287 |
. . 3
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀𝑏 ∈ 𝐵 𝑌 <s 𝑏) ↔ ¬ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) |
40 | 8, 18, 39 | 3bitr3d 309 |
. 2
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (¬ 𝑋 <s 𝑌 ↔ ¬ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) |
41 | 40 | con4bid 317 |
1
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) |