MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssnid Structured version   Visualization version   GIF version

Theorem abssnid 28181
Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
abssnid ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))

Proof of Theorem abssnid
StepHypRef Expression
1 0sno 27770 . . . 4 0s No
2 sleloe 27693 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≤s 0s ↔ (𝐴 <s 0s𝐴 = 0s )))
31, 2mpan2 691 . . 3 (𝐴 No → (𝐴 ≤s 0s ↔ (𝐴 <s 0s𝐴 = 0s )))
4 sltnle 27692 . . . . . 6 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴))
51, 4mpan2 691 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴))
6 abssval 28177 . . . . . . 7 (𝐴 No → (abss𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
7 iffalse 4481 . . . . . . 7 (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = ( -us𝐴))
86, 7sylan9eq 2786 . . . . . 6 ((𝐴 No ∧ ¬ 0s ≤s 𝐴) → (abss𝐴) = ( -us𝐴))
98ex 412 . . . . 5 (𝐴 No → (¬ 0s ≤s 𝐴 → (abss𝐴) = ( -us𝐴)))
105, 9sylbid 240 . . . 4 (𝐴 No → (𝐴 <s 0s → (abss𝐴) = ( -us𝐴)))
11 abs0s 28180 . . . . . . 7 (abss‘ 0s ) = 0s
12 negs0s 27968 . . . . . . 7 ( -us ‘ 0s ) = 0s
1311, 12eqtr4i 2757 . . . . . 6 (abss‘ 0s ) = ( -us ‘ 0s )
14 fveq2 6822 . . . . . 6 (𝐴 = 0s → (abss𝐴) = (abss‘ 0s ))
15 fveq2 6822 . . . . . 6 (𝐴 = 0s → ( -us𝐴) = ( -us ‘ 0s ))
1613, 14, 153eqtr4a 2792 . . . . 5 (𝐴 = 0s → (abss𝐴) = ( -us𝐴))
1716a1i 11 . . . 4 (𝐴 No → (𝐴 = 0s → (abss𝐴) = ( -us𝐴)))
1810, 17jaod 859 . . 3 (𝐴 No → ((𝐴 <s 0s𝐴 = 0s ) → (abss𝐴) = ( -us𝐴)))
193, 18sylbid 240 . 2 (𝐴 No → (𝐴 ≤s 0s → (abss𝐴) = ( -us𝐴)))
2019imp 406 1 ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  ifcif 4472   class class class wbr 5089  cfv 6481   No csur 27578   <s cslt 27579   ≤s csle 27683   0s c0s 27766   -us cnegs 27961  absscabss 28175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-negs 27963  df-abss 28176
This theorem is referenced by:  absmuls  28182  abssneg  28185  sleabs  28186
  Copyright terms: Public domain W3C validator