| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssnid | Structured version Visualization version GIF version | ||
| Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| abssnid | ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27740 | . . . 4 ⊢ 0s ∈ No | |
| 2 | sleloe 27664 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 0s ∈ No ) → (𝐴 ≤s 0s ↔ (𝐴 <s 0s ∨ 𝐴 = 0s ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ (𝐴 <s 0s ∨ 𝐴 = 0s ))) |
| 4 | sltnle 27663 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 0s ∈ No ) → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴)) | |
| 5 | 1, 4 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴)) |
| 6 | abssval 28146 | . . . . . . 7 ⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | |
| 7 | iffalse 4485 | . . . . . . 7 ⊢ (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) | |
| 8 | 6, 7 | sylan9eq 2784 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ ¬ 0s ≤s 𝐴) → (abss‘𝐴) = ( -us ‘𝐴)) |
| 9 | 8 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ No → (¬ 0s ≤s 𝐴 → (abss‘𝐴) = ( -us ‘𝐴))) |
| 10 | 5, 9 | sylbid 240 | . . . 4 ⊢ (𝐴 ∈ No → (𝐴 <s 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
| 11 | abs0s 28149 | . . . . . . 7 ⊢ (abss‘ 0s ) = 0s | |
| 12 | negs0s 27937 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 13 | 11, 12 | eqtr4i 2755 | . . . . . 6 ⊢ (abss‘ 0s ) = ( -us ‘ 0s ) |
| 14 | fveq2 6822 | . . . . . 6 ⊢ (𝐴 = 0s → (abss‘𝐴) = (abss‘ 0s )) | |
| 15 | fveq2 6822 | . . . . . 6 ⊢ (𝐴 = 0s → ( -us ‘𝐴) = ( -us ‘ 0s )) | |
| 16 | 13, 14, 15 | 3eqtr4a 2790 | . . . . 5 ⊢ (𝐴 = 0s → (abss‘𝐴) = ( -us ‘𝐴)) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (𝐴 = 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
| 18 | 10, 17 | jaod 859 | . . 3 ⊢ (𝐴 ∈ No → ((𝐴 <s 0s ∨ 𝐴 = 0s ) → (abss‘𝐴) = ( -us ‘𝐴))) |
| 19 | 3, 18 | sylbid 240 | . 2 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
| 20 | 19 | imp 406 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ifcif 4476 class class class wbr 5092 ‘cfv 6482 No csur 27549 <s cslt 27550 ≤s csle 27654 0s c0s 27736 -us cnegs 27930 absscabss 28144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27738 df-made 27757 df-old 27758 df-left 27760 df-right 27761 df-norec 27850 df-negs 27932 df-abss 28145 |
| This theorem is referenced by: absmuls 28151 abssneg 28154 sleabs 28155 |
| Copyright terms: Public domain | W3C validator |