| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssnid | Structured version Visualization version GIF version | ||
| Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| abssnid | ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27770 | . . . 4 ⊢ 0s ∈ No | |
| 2 | sleloe 27693 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 0s ∈ No ) → (𝐴 ≤s 0s ↔ (𝐴 <s 0s ∨ 𝐴 = 0s ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s ↔ (𝐴 <s 0s ∨ 𝐴 = 0s ))) |
| 4 | sltnle 27692 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 0s ∈ No ) → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴)) | |
| 5 | 1, 4 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴)) |
| 6 | abssval 28177 | . . . . . . 7 ⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | |
| 7 | iffalse 4481 | . . . . . . 7 ⊢ (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴)) = ( -us ‘𝐴)) | |
| 8 | 6, 7 | sylan9eq 2786 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ ¬ 0s ≤s 𝐴) → (abss‘𝐴) = ( -us ‘𝐴)) |
| 9 | 8 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ No → (¬ 0s ≤s 𝐴 → (abss‘𝐴) = ( -us ‘𝐴))) |
| 10 | 5, 9 | sylbid 240 | . . . 4 ⊢ (𝐴 ∈ No → (𝐴 <s 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
| 11 | abs0s 28180 | . . . . . . 7 ⊢ (abss‘ 0s ) = 0s | |
| 12 | negs0s 27968 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 13 | 11, 12 | eqtr4i 2757 | . . . . . 6 ⊢ (abss‘ 0s ) = ( -us ‘ 0s ) |
| 14 | fveq2 6822 | . . . . . 6 ⊢ (𝐴 = 0s → (abss‘𝐴) = (abss‘ 0s )) | |
| 15 | fveq2 6822 | . . . . . 6 ⊢ (𝐴 = 0s → ( -us ‘𝐴) = ( -us ‘ 0s )) | |
| 16 | 13, 14, 15 | 3eqtr4a 2792 | . . . . 5 ⊢ (𝐴 = 0s → (abss‘𝐴) = ( -us ‘𝐴)) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (𝐴 = 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
| 18 | 10, 17 | jaod 859 | . . 3 ⊢ (𝐴 ∈ No → ((𝐴 <s 0s ∨ 𝐴 = 0s ) → (abss‘𝐴) = ( -us ‘𝐴))) |
| 19 | 3, 18 | sylbid 240 | . 2 ⊢ (𝐴 ∈ No → (𝐴 ≤s 0s → (abss‘𝐴) = ( -us ‘𝐴))) |
| 20 | 19 | imp 406 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 ‘cfv 6481 No csur 27578 <s cslt 27579 ≤s csle 27683 0s c0s 27766 -us cnegs 27961 absscabss 28175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-negs 27963 df-abss 28176 |
| This theorem is referenced by: absmuls 28182 abssneg 28185 sleabs 28186 |
| Copyright terms: Public domain | W3C validator |