MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssnid Structured version   Visualization version   GIF version

Theorem abssnid 28187
Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
abssnid ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))

Proof of Theorem abssnid
StepHypRef Expression
1 0sno 27805 . . . 4 0s No
2 sleloe 27733 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≤s 0s ↔ (𝐴 <s 0s𝐴 = 0s )))
31, 2mpan2 689 . . 3 (𝐴 No → (𝐴 ≤s 0s ↔ (𝐴 <s 0s𝐴 = 0s )))
4 sltnle 27732 . . . . . 6 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴))
51, 4mpan2 689 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴))
6 abssval 28183 . . . . . . 7 (𝐴 No → (abss𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
7 iffalse 4539 . . . . . . 7 (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = ( -us𝐴))
86, 7sylan9eq 2785 . . . . . 6 ((𝐴 No ∧ ¬ 0s ≤s 𝐴) → (abss𝐴) = ( -us𝐴))
98ex 411 . . . . 5 (𝐴 No → (¬ 0s ≤s 𝐴 → (abss𝐴) = ( -us𝐴)))
105, 9sylbid 239 . . . 4 (𝐴 No → (𝐴 <s 0s → (abss𝐴) = ( -us𝐴)))
11 abs0s 28186 . . . . . . 7 (abss‘ 0s ) = 0s
12 negs0s 27985 . . . . . . 7 ( -us ‘ 0s ) = 0s
1311, 12eqtr4i 2756 . . . . . 6 (abss‘ 0s ) = ( -us ‘ 0s )
14 fveq2 6896 . . . . . 6 (𝐴 = 0s → (abss𝐴) = (abss‘ 0s ))
15 fveq2 6896 . . . . . 6 (𝐴 = 0s → ( -us𝐴) = ( -us ‘ 0s ))
1613, 14, 153eqtr4a 2791 . . . . 5 (𝐴 = 0s → (abss𝐴) = ( -us𝐴))
1716a1i 11 . . . 4 (𝐴 No → (𝐴 = 0s → (abss𝐴) = ( -us𝐴)))
1810, 17jaod 857 . . 3 (𝐴 No → ((𝐴 <s 0s𝐴 = 0s ) → (abss𝐴) = ( -us𝐴)))
193, 18sylbid 239 . 2 (𝐴 No → (𝐴 ≤s 0s → (abss𝐴) = ( -us𝐴)))
2019imp 405 1 ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  ifcif 4530   class class class wbr 5149  cfv 6549   No csur 27618   <s cslt 27619   ≤s csle 27723   0s c0s 27801   -us cnegs 27978  absscabss 28181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec 27901  df-negs 27980  df-abss 28182
This theorem is referenced by:  absmuls  28188  abssneg  28191  sleabs  28192
  Copyright terms: Public domain W3C validator