MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssnid Structured version   Visualization version   GIF version

Theorem abssnid 28152
Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
abssnid ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))

Proof of Theorem abssnid
StepHypRef Expression
1 0sno 27745 . . . 4 0s No
2 sleloe 27673 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≤s 0s ↔ (𝐴 <s 0s𝐴 = 0s )))
31, 2mpan2 691 . . 3 (𝐴 No → (𝐴 ≤s 0s ↔ (𝐴 <s 0s𝐴 = 0s )))
4 sltnle 27672 . . . . . 6 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴))
51, 4mpan2 691 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ ¬ 0s ≤s 𝐴))
6 abssval 28148 . . . . . . 7 (𝐴 No → (abss𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)))
7 iffalse 4500 . . . . . . 7 (¬ 0s ≤s 𝐴 → if( 0s ≤s 𝐴, 𝐴, ( -us𝐴)) = ( -us𝐴))
86, 7sylan9eq 2785 . . . . . 6 ((𝐴 No ∧ ¬ 0s ≤s 𝐴) → (abss𝐴) = ( -us𝐴))
98ex 412 . . . . 5 (𝐴 No → (¬ 0s ≤s 𝐴 → (abss𝐴) = ( -us𝐴)))
105, 9sylbid 240 . . . 4 (𝐴 No → (𝐴 <s 0s → (abss𝐴) = ( -us𝐴)))
11 abs0s 28151 . . . . . . 7 (abss‘ 0s ) = 0s
12 negs0s 27939 . . . . . . 7 ( -us ‘ 0s ) = 0s
1311, 12eqtr4i 2756 . . . . . 6 (abss‘ 0s ) = ( -us ‘ 0s )
14 fveq2 6861 . . . . . 6 (𝐴 = 0s → (abss𝐴) = (abss‘ 0s ))
15 fveq2 6861 . . . . . 6 (𝐴 = 0s → ( -us𝐴) = ( -us ‘ 0s ))
1613, 14, 153eqtr4a 2791 . . . . 5 (𝐴 = 0s → (abss𝐴) = ( -us𝐴))
1716a1i 11 . . . 4 (𝐴 No → (𝐴 = 0s → (abss𝐴) = ( -us𝐴)))
1810, 17jaod 859 . . 3 (𝐴 No → ((𝐴 <s 0s𝐴 = 0s ) → (abss𝐴) = ( -us𝐴)))
193, 18sylbid 240 . 2 (𝐴 No → (𝐴 ≤s 0s → (abss𝐴) = ( -us𝐴)))
2019imp 406 1 ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  ifcif 4491   class class class wbr 5110  cfv 6514   No csur 27558   <s cslt 27559   ≤s csle 27663   0s c0s 27741   -us cnegs 27932  absscabss 28146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-negs 27934  df-abss 28147
This theorem is referenced by:  absmuls  28153  abssneg  28156  sleabs  28157
  Copyright terms: Public domain W3C validator