![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sleloe | Structured version Visualization version GIF version |
Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sleloe | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt 27252 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
2 | orcom 868 | . . . 4 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐴 <s 𝐵)) | |
3 | eqcom 2739 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
4 | 3 | orbi1i 912 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 <s 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵)) |
5 | 2, 4 | bitri 274 | . . 3 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵)) |
6 | sltso 27176 | . . . . . 6 ⊢ <s Or No | |
7 | sotric 5616 | . . . . . 6 ⊢ (( <s Or No ∧ (𝐵 ∈ No ∧ 𝐴 ∈ No )) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) | |
8 | 6, 7 | mpan 688 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) |
9 | 8 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) |
10 | 9 | con2bid 354 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐵 = 𝐴 ∨ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
11 | 5, 10 | bitrid 282 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
12 | 1, 11 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 Or wor 5587 No csur 27140 <s cslt 27141 ≤s csle 27244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1o 8465 df-2o 8466 df-no 27143 df-slt 27144 df-sle 27245 |
This theorem is referenced by: slemuld 27591 |
Copyright terms: Public domain | W3C validator |