MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sleloe Structured version   Visualization version   GIF version

Theorem sleloe 27638
Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sleloe ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))

Proof of Theorem sleloe
StepHypRef Expression
1 slenlt 27636 . 2 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
2 orcom 867 . . . 4 ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (𝐴 = 𝐵𝐴 <s 𝐵))
3 eqcom 2733 . . . . 5 (𝐴 = 𝐵𝐵 = 𝐴)
43orbi1i 910 . . . 4 ((𝐴 = 𝐵𝐴 <s 𝐵) ↔ (𝐵 = 𝐴𝐴 <s 𝐵))
52, 4bitri 275 . . 3 ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (𝐵 = 𝐴𝐴 <s 𝐵))
6 sltso 27560 . . . . . 6 <s Or No
7 sotric 5609 . . . . . 6 (( <s Or No ∧ (𝐵 No 𝐴 No )) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 <s 𝐵)))
86, 7mpan 687 . . . . 5 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 <s 𝐵)))
98ancoms 458 . . . 4 ((𝐴 No 𝐵 No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 <s 𝐵)))
109con2bid 354 . . 3 ((𝐴 No 𝐵 No ) → ((𝐵 = 𝐴𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴))
115, 10bitrid 283 . 2 ((𝐴 No 𝐵 No ) → ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ ¬ 𝐵 <s 𝐴))
121, 11bitr4d 282 1 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098   class class class wbr 5141   Or wor 5580   No csur 27524   <s cslt 27525   ≤s csle 27628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1o 8464  df-2o 8465  df-no 27527  df-slt 27528  df-sle 27629
This theorem is referenced by:  sltlend  27655  slelss  27785  slemuld  27989  mulsge0d  27997  slemul1ad  28033  abssnid  28088  om2noseqlt2  28124  elnns2  28160
  Copyright terms: Public domain W3C validator