MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sleloe Structured version   Visualization version   GIF version

Theorem sleloe 27254
Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sleloe ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))

Proof of Theorem sleloe
StepHypRef Expression
1 slenlt 27252 . 2 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
2 orcom 868 . . . 4 ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (𝐴 = 𝐵𝐴 <s 𝐵))
3 eqcom 2739 . . . . 5 (𝐴 = 𝐵𝐵 = 𝐴)
43orbi1i 912 . . . 4 ((𝐴 = 𝐵𝐴 <s 𝐵) ↔ (𝐵 = 𝐴𝐴 <s 𝐵))
52, 4bitri 274 . . 3 ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (𝐵 = 𝐴𝐴 <s 𝐵))
6 sltso 27176 . . . . . 6 <s Or No
7 sotric 5616 . . . . . 6 (( <s Or No ∧ (𝐵 No 𝐴 No )) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 <s 𝐵)))
86, 7mpan 688 . . . . 5 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 <s 𝐵)))
98ancoms 459 . . . 4 ((𝐴 No 𝐵 No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 <s 𝐵)))
109con2bid 354 . . 3 ((𝐴 No 𝐵 No ) → ((𝐵 = 𝐴𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴))
115, 10bitrid 282 . 2 ((𝐴 No 𝐵 No ) → ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ ¬ 𝐵 <s 𝐴))
121, 11bitr4d 281 1 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106   class class class wbr 5148   Or wor 5587   No csur 27140   <s cslt 27141   ≤s csle 27244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-1o 8465  df-2o 8466  df-no 27143  df-slt 27144  df-sle 27245
This theorem is referenced by:  slemuld  27591
  Copyright terms: Public domain W3C validator