![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sleloe | Structured version Visualization version GIF version |
Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sleloe | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt 27782 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
2 | orcom 868 | . . . 4 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐴 <s 𝐵)) | |
3 | eqcom 2733 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
4 | 3 | orbi1i 911 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 <s 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵)) |
5 | 2, 4 | bitri 274 | . . 3 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵)) |
6 | sltso 27706 | . . . . . 6 ⊢ <s Or No | |
7 | sotric 5622 | . . . . . 6 ⊢ (( <s Or No ∧ (𝐵 ∈ No ∧ 𝐴 ∈ No )) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) | |
8 | 6, 7 | mpan 688 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) |
9 | 8 | ancoms 457 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) |
10 | 9 | con2bid 353 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐵 = 𝐴 ∨ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
11 | 5, 10 | bitrid 282 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
12 | 1, 11 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 Or wor 5593 No csur 27669 <s cslt 27670 ≤s csle 27774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6379 df-on 6380 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-1o 8496 df-2o 8497 df-no 27672 df-slt 27673 df-sle 27775 |
This theorem is referenced by: sltlend 27801 slelss 27931 slemuld 28139 mulsge0d 28147 slemul1ad 28183 abssnid 28238 om2noseqlt2 28274 elnns2 28312 |
Copyright terms: Public domain | W3C validator |