Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sleloe | Structured version Visualization version GIF version |
Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sleloe | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt 33692 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
2 | orcom 870 | . . . 4 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐴 <s 𝐵)) | |
3 | eqcom 2744 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
4 | 3 | orbi1i 914 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 <s 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵)) |
5 | 2, 4 | bitri 278 | . . 3 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵)) |
6 | sltso 33616 | . . . . . 6 ⊢ <s Or No | |
7 | sotric 5496 | . . . . . 6 ⊢ (( <s Or No ∧ (𝐵 ∈ No ∧ 𝐴 ∈ No )) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) | |
8 | 6, 7 | mpan 690 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) |
9 | 8 | ancoms 462 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) |
10 | 9 | con2bid 358 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐵 = 𝐴 ∨ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
11 | 5, 10 | syl5bb 286 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
12 | 1, 11 | bitr4d 285 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 Or wor 5467 No csur 33580 <s cslt 33581 ≤s csle 33684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-1o 8202 df-2o 8203 df-no 33583 df-slt 33584 df-sle 33685 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |