![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sleloe | Structured version Visualization version GIF version |
Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sleloe | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slenlt 27636 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
2 | orcom 867 | . . . 4 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐴 <s 𝐵)) | |
3 | eqcom 2733 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
4 | 3 | orbi1i 910 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 <s 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵)) |
5 | 2, 4 | bitri 275 | . . 3 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵)) |
6 | sltso 27560 | . . . . . 6 ⊢ <s Or No | |
7 | sotric 5609 | . . . . . 6 ⊢ (( <s Or No ∧ (𝐵 ∈ No ∧ 𝐴 ∈ No )) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) | |
8 | 6, 7 | mpan 687 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) |
9 | 8 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐵 <s 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 <s 𝐵))) |
10 | 9 | con2bid 354 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐵 = 𝐴 ∨ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
11 | 5, 10 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
12 | 1, 11 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 Or wor 5580 No csur 27524 <s cslt 27525 ≤s csle 27628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-1o 8464 df-2o 8465 df-no 27527 df-slt 27528 df-sle 27629 |
This theorem is referenced by: sltlend 27655 slelss 27785 slemuld 27989 mulsge0d 27997 slemul1ad 28033 abssnid 28088 om2noseqlt2 28124 elnns2 28160 |
Copyright terms: Public domain | W3C validator |