MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem3 Structured version   Visualization version   GIF version

Theorem lbsextlem3 21097
Description: Lemma for lbsext 21100. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.p 𝑃 = (LSubSp‘𝑊)
lbsext.a (𝜑𝐴𝑆)
lbsext.z (𝜑𝐴 ≠ ∅)
lbsext.r (𝜑 → [] Or 𝐴)
lbsext.t 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
Assertion
Ref Expression
lbsextlem3 (𝜑 𝐴𝑆)
Distinct variable groups:   𝑥,𝐽   𝑥,𝑢,𝜑   𝑢,𝑆,𝑥   𝑥,𝑧,𝐶   𝑧,𝑢,𝑁,𝑥   𝑢,𝑉,𝑥,𝑧   𝑢,𝑊,𝑥   𝑢,𝐴,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑢)   𝑃(𝑥,𝑧,𝑢)   𝑆(𝑧)   𝑇(𝑥,𝑧,𝑢)   𝐽(𝑧,𝑢)   𝑊(𝑧)

Proof of Theorem lbsextlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lbsext.a . . . . 5 (𝜑𝐴𝑆)
2 lbsext.s . . . . . 6 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
32ssrab3 4029 . . . . 5 𝑆 ⊆ 𝒫 𝑉
41, 3sstrdi 3942 . . . 4 (𝜑𝐴 ⊆ 𝒫 𝑉)
5 sspwuni 5046 . . . 4 (𝐴 ⊆ 𝒫 𝑉 𝐴𝑉)
64, 5sylib 218 . . 3 (𝜑 𝐴𝑉)
7 lbsext.v . . . . 5 𝑉 = (Base‘𝑊)
87fvexi 6836 . . . 4 𝑉 ∈ V
98elpw2 5270 . . 3 ( 𝐴 ∈ 𝒫 𝑉 𝐴𝑉)
106, 9sylibr 234 . 2 (𝜑 𝐴 ∈ 𝒫 𝑉)
11 ssintub 4914 . . . . 5 𝐶 {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
12 simpl 482 . . . . . . . . . 10 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧)
1312a1i 11 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑉 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧))
1413ss2rabi 4023 . . . . . . . 8 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
152, 14eqsstri 3976 . . . . . . 7 𝑆 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
161, 15sstrdi 3942 . . . . . 6 (𝜑𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧})
17 intss 4917 . . . . . 6 (𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧} → {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
1816, 17syl 17 . . . . 5 (𝜑 {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
1911, 18sstrid 3941 . . . 4 (𝜑𝐶 𝐴)
20 lbsext.z . . . . 5 (𝜑𝐴 ≠ ∅)
21 intssuni 4918 . . . . 5 (𝐴 ≠ ∅ → 𝐴 𝐴)
2220, 21syl 17 . . . 4 (𝜑 𝐴 𝐴)
2319, 22sstrd 3940 . . 3 (𝜑𝐶 𝐴)
24 eluni2 4860 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
25 simpll1 1213 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝜑)
26 lbsext.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LVec)
27 lveclmod 21040 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2826, 27syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
2925, 28syl 17 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑊 ∈ LMod)
3025, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝐴𝑆)
31 lbsext.r . . . . . . . . . . . . . . . . 17 (𝜑 → [] Or 𝐴)
3225, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → [] Or 𝐴)
33 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑦𝐴)
34 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑢𝐴)
35 sorpssun 7663 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑦𝐴𝑢𝐴)) → (𝑦𝑢) ∈ 𝐴)
3632, 33, 34, 35syl12anc 836 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝐴)
3730, 36sseldd 3930 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝑆)
383, 37sselid 3927 . . . . . . . . . . . . 13 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝒫 𝑉)
3938elpwid 4556 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ⊆ 𝑉)
4039ssdifssd 4094 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉)
41 ssun2 4126 . . . . . . . . . . . 12 𝑢 ⊆ (𝑦𝑢)
42 ssdif 4091 . . . . . . . . . . . 12 (𝑢 ⊆ (𝑦𝑢) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
4341, 42mp1i 13 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
44 lbsext.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
457, 44lspss 20917 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥})) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
4629, 40, 43, 45syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
47 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
4846, 47sseldd 3930 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
49 sseq2 3956 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (𝐶𝑧𝐶 ⊆ (𝑦𝑢)))
50 difeq1 4066 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦𝑢) → (𝑧 ∖ {𝑥}) = ((𝑦𝑢) ∖ {𝑥}))
5150fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦𝑢) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑦𝑢) ∖ {𝑥})))
5251eleq2d 2817 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦𝑢) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5352notbid 318 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑢) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5453raleqbi1dv 3304 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5549, 54anbi12d 632 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑢) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5655, 2elrab2 3645 . . . . . . . . . . . . 13 ((𝑦𝑢) ∈ 𝑆 ↔ ((𝑦𝑢) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5756simprbi 496 . . . . . . . . . . . 12 ((𝑦𝑢) ∈ 𝑆 → (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5857simprd 495 . . . . . . . . . . 11 ((𝑦𝑢) ∈ 𝑆 → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
5937, 58syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
60 simpll3 1215 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥𝑦)
61 elun1 4129 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ (𝑦𝑢))
6260, 61syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑦𝑢))
63 rsp 3220 . . . . . . . . . 10 (∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})) → (𝑥 ∈ (𝑦𝑢) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
6459, 62, 63sylc 65 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
6548, 64pm2.65da 816 . . . . . . . 8 (((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) → ¬ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
6665nrexdv 3127 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → ¬ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
67 lbsext.j . . . . . . . . . . . . . . . 16 𝐽 = (LBasis‘𝑊)
68 lbsext.c . . . . . . . . . . . . . . . 16 (𝜑𝐶𝑉)
69 lbsext.x . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
70 lbsext.p . . . . . . . . . . . . . . . 16 𝑃 = (LSubSp‘𝑊)
71 lbsext.t . . . . . . . . . . . . . . . 16 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
727, 67, 44, 26, 68, 69, 2, 70, 1, 20, 31, 71lbsextlem2 21096 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
7372simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑇𝑃)
747, 70lssss 20869 . . . . . . . . . . . . . 14 (𝑇𝑃𝑇𝑉)
7573, 74syl 17 . . . . . . . . . . . . 13 (𝜑𝑇𝑉)
7672simprd 495 . . . . . . . . . . . . 13 (𝜑 → ( 𝐴 ∖ {𝑥}) ⊆ 𝑇)
777, 44lspss 20917 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑉 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
7828, 75, 76, 77syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
7970, 44lspid 20915 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑃) → (𝑁𝑇) = 𝑇)
8028, 73, 79syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑇) = 𝑇)
8178, 80sseqtrd 3966 . . . . . . . . . . 11 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
82813ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
8382, 71sseqtrdi 3970 . . . . . . . . 9 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
8483sseld 3928 . . . . . . . 8 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → 𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))))
85 eliun 4943 . . . . . . . 8 (𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
8684, 85imbitrdi 251 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
8766, 86mtod 198 . . . . . 6 ((𝜑𝑦𝐴𝑥𝑦) → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
8887rexlimdv3a 3137 . . . . 5 (𝜑 → (∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
8924, 88biimtrid 242 . . . 4 (𝜑 → (𝑥 𝐴 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9089ralrimiv 3123 . . 3 (𝜑 → ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
9123, 90jca 511 . 2 (𝜑 → (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
92 sseq2 3956 . . . 4 (𝑧 = 𝐴 → (𝐶𝑧𝐶 𝐴))
93 difeq1 4066 . . . . . . . 8 (𝑧 = 𝐴 → (𝑧 ∖ {𝑥}) = ( 𝐴 ∖ {𝑥}))
9493fveq2d 6826 . . . . . . 7 (𝑧 = 𝐴 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘( 𝐴 ∖ {𝑥})))
9594eleq2d 2817 . . . . . 6 (𝑧 = 𝐴 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9695notbid 318 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9796raleqbi1dv 3304 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9892, 97anbi12d 632 . . 3 (𝑧 = 𝐴 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
9998, 2elrab2 3645 . 2 ( 𝐴𝑆 ↔ ( 𝐴 ∈ 𝒫 𝑉 ∧ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
10010, 91, 99sylanbrc 583 1 (𝜑 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cdif 3894  cun 3895  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   cuni 4856   cint 4895   ciun 4939   Or wor 5521  cfv 6481   [] crpss 7655  Basecbs 17120  LModclmod 20793  LSubSpclss 20864  LSpanclspn 20904  LBasisclbs 21008  LVecclvec 21036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mgp 20059  df-ur 20100  df-ring 20153  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037
This theorem is referenced by:  lbsextlem4  21098
  Copyright terms: Public domain W3C validator