MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem3 Structured version   Visualization version   GIF version

Theorem lbsextlem3 20422
Description: Lemma for lbsext 20425. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.p 𝑃 = (LSubSp‘𝑊)
lbsext.a (𝜑𝐴𝑆)
lbsext.z (𝜑𝐴 ≠ ∅)
lbsext.r (𝜑 → [] Or 𝐴)
lbsext.t 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
Assertion
Ref Expression
lbsextlem3 (𝜑 𝐴𝑆)
Distinct variable groups:   𝑥,𝐽   𝑥,𝑢,𝜑   𝑢,𝑆,𝑥   𝑥,𝑧,𝐶   𝑧,𝑢,𝑁,𝑥   𝑢,𝑉,𝑥,𝑧   𝑢,𝑊,𝑥   𝑢,𝐴,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑢)   𝑃(𝑥,𝑧,𝑢)   𝑆(𝑧)   𝑇(𝑥,𝑧,𝑢)   𝐽(𝑧,𝑢)   𝑊(𝑧)

Proof of Theorem lbsextlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lbsext.a . . . . 5 (𝜑𝐴𝑆)
2 lbsext.s . . . . . 6 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
32ssrab3 4015 . . . . 5 𝑆 ⊆ 𝒫 𝑉
41, 3sstrdi 3933 . . . 4 (𝜑𝐴 ⊆ 𝒫 𝑉)
5 sspwuni 5029 . . . 4 (𝐴 ⊆ 𝒫 𝑉 𝐴𝑉)
64, 5sylib 217 . . 3 (𝜑 𝐴𝑉)
7 lbsext.v . . . . 5 𝑉 = (Base‘𝑊)
87fvexi 6788 . . . 4 𝑉 ∈ V
98elpw2 5269 . . 3 ( 𝐴 ∈ 𝒫 𝑉 𝐴𝑉)
106, 9sylibr 233 . 2 (𝜑 𝐴 ∈ 𝒫 𝑉)
11 ssintub 4897 . . . . 5 𝐶 {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
12 simpl 483 . . . . . . . . . 10 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧)
1312a1i 11 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑉 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧))
1413ss2rabi 4010 . . . . . . . 8 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
152, 14eqsstri 3955 . . . . . . 7 𝑆 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
161, 15sstrdi 3933 . . . . . 6 (𝜑𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧})
17 intss 4900 . . . . . 6 (𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧} → {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
1816, 17syl 17 . . . . 5 (𝜑 {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
1911, 18sstrid 3932 . . . 4 (𝜑𝐶 𝐴)
20 lbsext.z . . . . 5 (𝜑𝐴 ≠ ∅)
21 intssuni 4901 . . . . 5 (𝐴 ≠ ∅ → 𝐴 𝐴)
2220, 21syl 17 . . . 4 (𝜑 𝐴 𝐴)
2319, 22sstrd 3931 . . 3 (𝜑𝐶 𝐴)
24 eluni2 4843 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
25 simpll1 1211 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝜑)
26 lbsext.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LVec)
27 lveclmod 20368 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2826, 27syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
2925, 28syl 17 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑊 ∈ LMod)
3025, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝐴𝑆)
31 lbsext.r . . . . . . . . . . . . . . . . 17 (𝜑 → [] Or 𝐴)
3225, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → [] Or 𝐴)
33 simpll2 1212 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑦𝐴)
34 simplr 766 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑢𝐴)
35 sorpssun 7583 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑦𝐴𝑢𝐴)) → (𝑦𝑢) ∈ 𝐴)
3632, 33, 34, 35syl12anc 834 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝐴)
3730, 36sseldd 3922 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝑆)
383, 37sselid 3919 . . . . . . . . . . . . 13 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝒫 𝑉)
3938elpwid 4544 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ⊆ 𝑉)
4039ssdifssd 4077 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉)
41 ssun2 4107 . . . . . . . . . . . 12 𝑢 ⊆ (𝑦𝑢)
42 ssdif 4074 . . . . . . . . . . . 12 (𝑢 ⊆ (𝑦𝑢) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
4341, 42mp1i 13 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
44 lbsext.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
457, 44lspss 20246 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥})) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
4629, 40, 43, 45syl3anc 1370 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
47 simpr 485 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
4846, 47sseldd 3922 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
49 sseq2 3947 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (𝐶𝑧𝐶 ⊆ (𝑦𝑢)))
50 difeq1 4050 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦𝑢) → (𝑧 ∖ {𝑥}) = ((𝑦𝑢) ∖ {𝑥}))
5150fveq2d 6778 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦𝑢) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑦𝑢) ∖ {𝑥})))
5251eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦𝑢) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5352notbid 318 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑢) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5453raleqbi1dv 3340 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5549, 54anbi12d 631 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑢) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5655, 2elrab2 3627 . . . . . . . . . . . . 13 ((𝑦𝑢) ∈ 𝑆 ↔ ((𝑦𝑢) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5756simprbi 497 . . . . . . . . . . . 12 ((𝑦𝑢) ∈ 𝑆 → (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5857simprd 496 . . . . . . . . . . 11 ((𝑦𝑢) ∈ 𝑆 → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
5937, 58syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
60 simpll3 1213 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥𝑦)
61 elun1 4110 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ (𝑦𝑢))
6260, 61syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑦𝑢))
63 rsp 3131 . . . . . . . . . 10 (∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})) → (𝑥 ∈ (𝑦𝑢) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
6459, 62, 63sylc 65 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
6548, 64pm2.65da 814 . . . . . . . 8 (((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) → ¬ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
6665nrexdv 3198 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → ¬ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
67 lbsext.j . . . . . . . . . . . . . . . 16 𝐽 = (LBasis‘𝑊)
68 lbsext.c . . . . . . . . . . . . . . . 16 (𝜑𝐶𝑉)
69 lbsext.x . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
70 lbsext.p . . . . . . . . . . . . . . . 16 𝑃 = (LSubSp‘𝑊)
71 lbsext.t . . . . . . . . . . . . . . . 16 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
727, 67, 44, 26, 68, 69, 2, 70, 1, 20, 31, 71lbsextlem2 20421 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
7372simpld 495 . . . . . . . . . . . . . 14 (𝜑𝑇𝑃)
747, 70lssss 20198 . . . . . . . . . . . . . 14 (𝑇𝑃𝑇𝑉)
7573, 74syl 17 . . . . . . . . . . . . 13 (𝜑𝑇𝑉)
7672simprd 496 . . . . . . . . . . . . 13 (𝜑 → ( 𝐴 ∖ {𝑥}) ⊆ 𝑇)
777, 44lspss 20246 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑉 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
7828, 75, 76, 77syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
7970, 44lspid 20244 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑃) → (𝑁𝑇) = 𝑇)
8028, 73, 79syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑇) = 𝑇)
8178, 80sseqtrd 3961 . . . . . . . . . . 11 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
82813ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
8382, 71sseqtrdi 3971 . . . . . . . . 9 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
8483sseld 3920 . . . . . . . 8 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → 𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))))
85 eliun 4928 . . . . . . . 8 (𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
8684, 85syl6ib 250 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
8766, 86mtod 197 . . . . . 6 ((𝜑𝑦𝐴𝑥𝑦) → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
8887rexlimdv3a 3215 . . . . 5 (𝜑 → (∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
8924, 88syl5bi 241 . . . 4 (𝜑 → (𝑥 𝐴 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9089ralrimiv 3102 . . 3 (𝜑 → ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
9123, 90jca 512 . 2 (𝜑 → (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
92 sseq2 3947 . . . 4 (𝑧 = 𝐴 → (𝐶𝑧𝐶 𝐴))
93 difeq1 4050 . . . . . . . 8 (𝑧 = 𝐴 → (𝑧 ∖ {𝑥}) = ( 𝐴 ∖ {𝑥}))
9493fveq2d 6778 . . . . . . 7 (𝑧 = 𝐴 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘( 𝐴 ∖ {𝑥})))
9594eleq2d 2824 . . . . . 6 (𝑧 = 𝐴 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9695notbid 318 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9796raleqbi1dv 3340 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9892, 97anbi12d 631 . . 3 (𝑧 = 𝐴 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
9998, 2elrab2 3627 . 2 ( 𝐴𝑆 ↔ ( 𝐴 ∈ 𝒫 𝑉 ∧ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
10010, 91, 99sylanbrc 583 1 (𝜑 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cdif 3884  cun 3885  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   cint 4879   ciun 4924   Or wor 5502  cfv 6433   [] crpss 7575  Basecbs 16912  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LBasisclbs 20336  LVecclvec 20364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365
This theorem is referenced by:  lbsextlem4  20423
  Copyright terms: Public domain W3C validator