MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem3 Structured version   Visualization version   GIF version

Theorem lbsextlem3 21077
Description: Lemma for lbsext 21080. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.p 𝑃 = (LSubSp‘𝑊)
lbsext.a (𝜑𝐴𝑆)
lbsext.z (𝜑𝐴 ≠ ∅)
lbsext.r (𝜑 → [] Or 𝐴)
lbsext.t 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
Assertion
Ref Expression
lbsextlem3 (𝜑 𝐴𝑆)
Distinct variable groups:   𝑥,𝐽   𝑥,𝑢,𝜑   𝑢,𝑆,𝑥   𝑥,𝑧,𝐶   𝑧,𝑢,𝑁,𝑥   𝑢,𝑉,𝑥,𝑧   𝑢,𝑊,𝑥   𝑢,𝐴,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑢)   𝑃(𝑥,𝑧,𝑢)   𝑆(𝑧)   𝑇(𝑥,𝑧,𝑢)   𝐽(𝑧,𝑢)   𝑊(𝑧)

Proof of Theorem lbsextlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lbsext.a . . . . 5 (𝜑𝐴𝑆)
2 lbsext.s . . . . . 6 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
32ssrab3 4048 . . . . 5 𝑆 ⊆ 𝒫 𝑉
41, 3sstrdi 3962 . . . 4 (𝜑𝐴 ⊆ 𝒫 𝑉)
5 sspwuni 5067 . . . 4 (𝐴 ⊆ 𝒫 𝑉 𝐴𝑉)
64, 5sylib 218 . . 3 (𝜑 𝐴𝑉)
7 lbsext.v . . . . 5 𝑉 = (Base‘𝑊)
87fvexi 6875 . . . 4 𝑉 ∈ V
98elpw2 5292 . . 3 ( 𝐴 ∈ 𝒫 𝑉 𝐴𝑉)
106, 9sylibr 234 . 2 (𝜑 𝐴 ∈ 𝒫 𝑉)
11 ssintub 4933 . . . . 5 𝐶 {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
12 simpl 482 . . . . . . . . . 10 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧)
1312a1i 11 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑉 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧))
1413ss2rabi 4043 . . . . . . . 8 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
152, 14eqsstri 3996 . . . . . . 7 𝑆 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
161, 15sstrdi 3962 . . . . . 6 (𝜑𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧})
17 intss 4936 . . . . . 6 (𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧} → {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
1816, 17syl 17 . . . . 5 (𝜑 {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
1911, 18sstrid 3961 . . . 4 (𝜑𝐶 𝐴)
20 lbsext.z . . . . 5 (𝜑𝐴 ≠ ∅)
21 intssuni 4937 . . . . 5 (𝐴 ≠ ∅ → 𝐴 𝐴)
2220, 21syl 17 . . . 4 (𝜑 𝐴 𝐴)
2319, 22sstrd 3960 . . 3 (𝜑𝐶 𝐴)
24 eluni2 4878 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
25 simpll1 1213 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝜑)
26 lbsext.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LVec)
27 lveclmod 21020 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2826, 27syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
2925, 28syl 17 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑊 ∈ LMod)
3025, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝐴𝑆)
31 lbsext.r . . . . . . . . . . . . . . . . 17 (𝜑 → [] Or 𝐴)
3225, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → [] Or 𝐴)
33 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑦𝐴)
34 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑢𝐴)
35 sorpssun 7709 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑦𝐴𝑢𝐴)) → (𝑦𝑢) ∈ 𝐴)
3632, 33, 34, 35syl12anc 836 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝐴)
3730, 36sseldd 3950 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝑆)
383, 37sselid 3947 . . . . . . . . . . . . 13 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝒫 𝑉)
3938elpwid 4575 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ⊆ 𝑉)
4039ssdifssd 4113 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉)
41 ssun2 4145 . . . . . . . . . . . 12 𝑢 ⊆ (𝑦𝑢)
42 ssdif 4110 . . . . . . . . . . . 12 (𝑢 ⊆ (𝑦𝑢) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
4341, 42mp1i 13 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
44 lbsext.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
457, 44lspss 20897 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥})) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
4629, 40, 43, 45syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
47 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
4846, 47sseldd 3950 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
49 sseq2 3976 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (𝐶𝑧𝐶 ⊆ (𝑦𝑢)))
50 difeq1 4085 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦𝑢) → (𝑧 ∖ {𝑥}) = ((𝑦𝑢) ∖ {𝑥}))
5150fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦𝑢) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑦𝑢) ∖ {𝑥})))
5251eleq2d 2815 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦𝑢) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5352notbid 318 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑢) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5453raleqbi1dv 3313 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5549, 54anbi12d 632 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑢) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5655, 2elrab2 3665 . . . . . . . . . . . . 13 ((𝑦𝑢) ∈ 𝑆 ↔ ((𝑦𝑢) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5756simprbi 496 . . . . . . . . . . . 12 ((𝑦𝑢) ∈ 𝑆 → (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5857simprd 495 . . . . . . . . . . 11 ((𝑦𝑢) ∈ 𝑆 → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
5937, 58syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
60 simpll3 1215 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥𝑦)
61 elun1 4148 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ (𝑦𝑢))
6260, 61syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑦𝑢))
63 rsp 3226 . . . . . . . . . 10 (∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})) → (𝑥 ∈ (𝑦𝑢) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
6459, 62, 63sylc 65 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
6548, 64pm2.65da 816 . . . . . . . 8 (((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) → ¬ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
6665nrexdv 3129 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → ¬ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
67 lbsext.j . . . . . . . . . . . . . . . 16 𝐽 = (LBasis‘𝑊)
68 lbsext.c . . . . . . . . . . . . . . . 16 (𝜑𝐶𝑉)
69 lbsext.x . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
70 lbsext.p . . . . . . . . . . . . . . . 16 𝑃 = (LSubSp‘𝑊)
71 lbsext.t . . . . . . . . . . . . . . . 16 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
727, 67, 44, 26, 68, 69, 2, 70, 1, 20, 31, 71lbsextlem2 21076 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
7372simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑇𝑃)
747, 70lssss 20849 . . . . . . . . . . . . . 14 (𝑇𝑃𝑇𝑉)
7573, 74syl 17 . . . . . . . . . . . . 13 (𝜑𝑇𝑉)
7672simprd 495 . . . . . . . . . . . . 13 (𝜑 → ( 𝐴 ∖ {𝑥}) ⊆ 𝑇)
777, 44lspss 20897 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑉 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
7828, 75, 76, 77syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
7970, 44lspid 20895 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑃) → (𝑁𝑇) = 𝑇)
8028, 73, 79syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑇) = 𝑇)
8178, 80sseqtrd 3986 . . . . . . . . . . 11 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
82813ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
8382, 71sseqtrdi 3990 . . . . . . . . 9 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
8483sseld 3948 . . . . . . . 8 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → 𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))))
85 eliun 4962 . . . . . . . 8 (𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
8684, 85imbitrdi 251 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
8766, 86mtod 198 . . . . . 6 ((𝜑𝑦𝐴𝑥𝑦) → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
8887rexlimdv3a 3139 . . . . 5 (𝜑 → (∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
8924, 88biimtrid 242 . . . 4 (𝜑 → (𝑥 𝐴 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9089ralrimiv 3125 . . 3 (𝜑 → ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
9123, 90jca 511 . 2 (𝜑 → (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
92 sseq2 3976 . . . 4 (𝑧 = 𝐴 → (𝐶𝑧𝐶 𝐴))
93 difeq1 4085 . . . . . . . 8 (𝑧 = 𝐴 → (𝑧 ∖ {𝑥}) = ( 𝐴 ∖ {𝑥}))
9493fveq2d 6865 . . . . . . 7 (𝑧 = 𝐴 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘( 𝐴 ∖ {𝑥})))
9594eleq2d 2815 . . . . . 6 (𝑧 = 𝐴 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9695notbid 318 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9796raleqbi1dv 3313 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9892, 97anbi12d 632 . . 3 (𝑧 = 𝐴 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
9998, 2elrab2 3665 . 2 ( 𝐴𝑆 ↔ ( 𝐴 ∈ 𝒫 𝑉 ∧ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
10010, 91, 99sylanbrc 583 1 (𝜑 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cdif 3914  cun 3915  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   cint 4913   ciun 4958   Or wor 5548  cfv 6514   [] crpss 7701  Basecbs 17186  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LBasisclbs 20988  LVecclvec 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017
This theorem is referenced by:  lbsextlem4  21078
  Copyright terms: Public domain W3C validator