MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsschain Structured version   Visualization version   GIF version

Theorem finsschain 9429
Description: A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub 24074 and others. (Contributed by Jeff Hankins, 25-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
finsschain (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝐵 ∈ Fin ∧ 𝐵 𝐴)) → ∃𝑧𝐴 𝐵𝑧)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵

Proof of Theorem finsschain
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 4034 . . . . . 6 (𝑎 = ∅ → (𝑎 𝐴 ↔ ∅ ⊆ 𝐴))
2 sseq1 4034 . . . . . . 7 (𝑎 = ∅ → (𝑎𝑧 ↔ ∅ ⊆ 𝑧))
32rexbidv 3185 . . . . . 6 (𝑎 = ∅ → (∃𝑧𝐴 𝑎𝑧 ↔ ∃𝑧𝐴 ∅ ⊆ 𝑧))
41, 3imbi12d 344 . . . . 5 (𝑎 = ∅ → ((𝑎 𝐴 → ∃𝑧𝐴 𝑎𝑧) ↔ (∅ ⊆ 𝐴 → ∃𝑧𝐴 ∅ ⊆ 𝑧)))
54imbi2d 340 . . . 4 (𝑎 = ∅ → (((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝑎 𝐴 → ∃𝑧𝐴 𝑎𝑧)) ↔ ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (∅ ⊆ 𝐴 → ∃𝑧𝐴 ∅ ⊆ 𝑧))))
6 sseq1 4034 . . . . . 6 (𝑎 = 𝑏 → (𝑎 𝐴𝑏 𝐴))
7 sseq1 4034 . . . . . . 7 (𝑎 = 𝑏 → (𝑎𝑧𝑏𝑧))
87rexbidv 3185 . . . . . 6 (𝑎 = 𝑏 → (∃𝑧𝐴 𝑎𝑧 ↔ ∃𝑧𝐴 𝑏𝑧))
96, 8imbi12d 344 . . . . 5 (𝑎 = 𝑏 → ((𝑎 𝐴 → ∃𝑧𝐴 𝑎𝑧) ↔ (𝑏 𝐴 → ∃𝑧𝐴 𝑏𝑧)))
109imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝑎 𝐴 → ∃𝑧𝐴 𝑎𝑧)) ↔ ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝑏 𝐴 → ∃𝑧𝐴 𝑏𝑧))))
11 sseq1 4034 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 𝐴 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐴))
12 sseq1 4034 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝑧 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝑧))
1312rexbidv 3185 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (∃𝑧𝐴 𝑎𝑧 ↔ ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧))
1411, 13imbi12d 344 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎 𝐴 → ∃𝑧𝐴 𝑎𝑧) ↔ ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧)))
1514imbi2d 340 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝑎 𝐴 → ∃𝑧𝐴 𝑎𝑧)) ↔ ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧))))
16 sseq1 4034 . . . . . 6 (𝑎 = 𝐵 → (𝑎 𝐴𝐵 𝐴))
17 sseq1 4034 . . . . . . 7 (𝑎 = 𝐵 → (𝑎𝑧𝐵𝑧))
1817rexbidv 3185 . . . . . 6 (𝑎 = 𝐵 → (∃𝑧𝐴 𝑎𝑧 ↔ ∃𝑧𝐴 𝐵𝑧))
1916, 18imbi12d 344 . . . . 5 (𝑎 = 𝐵 → ((𝑎 𝐴 → ∃𝑧𝐴 𝑎𝑧) ↔ (𝐵 𝐴 → ∃𝑧𝐴 𝐵𝑧)))
2019imbi2d 340 . . . 4 (𝑎 = 𝐵 → (((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝑎 𝐴 → ∃𝑧𝐴 𝑎𝑧)) ↔ ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝐵 𝐴 → ∃𝑧𝐴 𝐵𝑧))))
21 0ss 4423 . . . . . . . 8 ∅ ⊆ 𝑧
2221rgenw 3071 . . . . . . 7 𝑧𝐴 ∅ ⊆ 𝑧
23 r19.2z 4518 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑧𝐴 ∅ ⊆ 𝑧) → ∃𝑧𝐴 ∅ ⊆ 𝑧)
2422, 23mpan2 690 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑧𝐴 ∅ ⊆ 𝑧)
2524adantr 480 . . . . 5 ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → ∃𝑧𝐴 ∅ ⊆ 𝑧)
2625a1d 25 . . . 4 ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (∅ ⊆ 𝐴 → ∃𝑧𝐴 ∅ ⊆ 𝑧))
27 id 22 . . . . . . . . 9 ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → (𝑏 ∪ {𝑐}) ⊆ 𝐴)
2827unssad 4216 . . . . . . . 8 ((𝑏 ∪ {𝑐}) ⊆ 𝐴𝑏 𝐴)
2928imim1i 63 . . . . . . 7 ((𝑏 𝐴 → ∃𝑧𝐴 𝑏𝑧) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → ∃𝑧𝐴 𝑏𝑧))
30 sseq2 4035 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝑏𝑧𝑏𝑤))
3130cbvrexvw 3244 . . . . . . . . . 10 (∃𝑧𝐴 𝑏𝑧 ↔ ∃𝑤𝐴 𝑏𝑤)
32 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) → (𝑏 ∪ {𝑐}) ⊆ 𝐴)
3332unssbd 4217 . . . . . . . . . . . . 13 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) → {𝑐} ⊆ 𝐴)
34 vex 3492 . . . . . . . . . . . . . 14 𝑐 ∈ V
3534snss 4810 . . . . . . . . . . . . 13 (𝑐 𝐴 ↔ {𝑐} ⊆ 𝐴)
3633, 35sylibr 234 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) → 𝑐 𝐴)
37 eluni2 4935 . . . . . . . . . . . 12 (𝑐 𝐴 ↔ ∃𝑢𝐴 𝑐𝑢)
3836, 37sylib 218 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) → ∃𝑢𝐴 𝑐𝑢)
39 reeanv 3235 . . . . . . . . . . . 12 (∃𝑢𝐴𝑤𝐴 (𝑐𝑢𝑏𝑤) ↔ (∃𝑢𝐴 𝑐𝑢 ∧ ∃𝑤𝐴 𝑏𝑤))
40 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → [] Or 𝐴)
41 simprlr 779 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → 𝑤𝐴)
42 simprll 778 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → 𝑢𝐴)
43 sorpssun 7765 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑤𝐴𝑢𝐴)) → (𝑤𝑢) ∈ 𝐴)
4440, 41, 42, 43syl12anc 836 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → (𝑤𝑢) ∈ 𝐴)
45 simprrr 781 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → 𝑏𝑤)
46 simprrl 780 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → 𝑐𝑢)
4746snssd 4834 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → {𝑐} ⊆ 𝑢)
48 unss12 4211 . . . . . . . . . . . . . . . 16 ((𝑏𝑤 ∧ {𝑐} ⊆ 𝑢) → (𝑏 ∪ {𝑐}) ⊆ (𝑤𝑢))
4945, 47, 48syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → (𝑏 ∪ {𝑐}) ⊆ (𝑤𝑢))
50 sseq2 4035 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤𝑢) → ((𝑏 ∪ {𝑐}) ⊆ 𝑧 ↔ (𝑏 ∪ {𝑐}) ⊆ (𝑤𝑢)))
5150rspcev 3635 . . . . . . . . . . . . . . 15 (((𝑤𝑢) ∈ 𝐴 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑤𝑢)) → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧)
5244, 49, 51syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ ((𝑢𝐴𝑤𝐴) ∧ (𝑐𝑢𝑏𝑤))) → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧)
5352expr 456 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) ∧ (𝑢𝐴𝑤𝐴)) → ((𝑐𝑢𝑏𝑤) → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧))
5453rexlimdvva 3219 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) → (∃𝑢𝐴𝑤𝐴 (𝑐𝑢𝑏𝑤) → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧))
5539, 54biimtrrid 243 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) → ((∃𝑢𝐴 𝑐𝑢 ∧ ∃𝑤𝐴 𝑏𝑤) → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧))
5638, 55mpand 694 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) → (∃𝑤𝐴 𝑏𝑤 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧))
5731, 56biimtrid 242 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐴) → (∃𝑧𝐴 𝑏𝑧 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧))
5857ex 412 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → (∃𝑧𝐴 𝑏𝑧 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧)))
5958a2d 29 . . . . . . 7 ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (((𝑏 ∪ {𝑐}) ⊆ 𝐴 → ∃𝑧𝐴 𝑏𝑧) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧)))
6029, 59syl5 34 . . . . . 6 ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → ((𝑏 𝐴 → ∃𝑧𝐴 𝑏𝑧) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧)))
6160a2i 14 . . . . 5 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝑏 𝐴 → ∃𝑧𝐴 𝑏𝑧)) → ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧)))
6261a1i 11 . . . 4 (𝑏 ∈ Fin → (((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝑏 𝐴 → ∃𝑧𝐴 𝑏𝑧)) → ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → ∃𝑧𝐴 (𝑏 ∪ {𝑐}) ⊆ 𝑧))))
635, 10, 15, 20, 26, 62findcard2 9230 . . 3 (𝐵 ∈ Fin → ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝐵 𝐴 → ∃𝑧𝐴 𝐵𝑧)))
6463com12 32 . 2 ((𝐴 ≠ ∅ ∧ [] Or 𝐴) → (𝐵 ∈ Fin → (𝐵 𝐴 → ∃𝑧𝐴 𝐵𝑧)))
6564imp32 418 1 (((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝐵 ∈ Fin ∧ 𝐵 𝐴)) → ∃𝑧𝐴 𝐵𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cun 3974  wss 3976  c0 4352  {csn 4648   cuni 4931   Or wor 5606   [] crpss 7757  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-rpss 7758  df-om 7904  df-en 9004  df-fin 9007
This theorem is referenced by:  alexsubALTlem2  24077
  Copyright terms: Public domain W3C validator