MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday1s Structured version   Visualization version   GIF version

Theorem bday1s 27745
Description: The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
bday1s ( bday ‘ 1s ) = 1o

Proof of Theorem bday1s
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1s 27739 . . 3 1s = ({ 0s } |s ∅)
21fveq2i 6825 . 2 ( bday ‘ 1s ) = ( bday ‘({ 0s } |s ∅))
3 0sno 27740 . . . . . . 7 0s No
4 snelpwi 5386 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
53, 4ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
6 nulssgt 27709 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
75, 6ax-mp 5 . . . . 5 { 0s } <<s ∅
8 scutbdaybnd2 27727 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅)))
97, 8ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅))
10 un0 4345 . . . . . . . . . 10 ({ 0s } ∪ ∅) = { 0s }
1110imaeq2i 6009 . . . . . . . . 9 ( bday “ ({ 0s } ∪ ∅)) = ( bday “ { 0s })
12 bdayfn 27683 . . . . . . . . . 10 bday Fn No
13 fnsnfv 6902 . . . . . . . . . 10 (( bday Fn No ∧ 0s No ) → {( bday ‘ 0s )} = ( bday “ { 0s }))
1412, 3, 13mp2an 692 . . . . . . . . 9 {( bday ‘ 0s )} = ( bday “ { 0s })
15 bday0s 27742 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
1615sneqi 4588 . . . . . . . . 9 {( bday ‘ 0s )} = {∅}
1711, 14, 163eqtr2i 2758 . . . . . . . 8 ( bday “ ({ 0s } ∪ ∅)) = {∅}
1817unieqi 4870 . . . . . . 7 ( bday “ ({ 0s } ∪ ∅)) = {∅}
19 0ex 5246 . . . . . . . 8 ∅ ∈ V
2019unisn 4877 . . . . . . 7 {∅} = ∅
2118, 20eqtri 2752 . . . . . 6 ( bday “ ({ 0s } ∪ ∅)) = ∅
22 suceq 6375 . . . . . 6 ( ( bday “ ({ 0s } ∪ ∅)) = ∅ → suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅)
2321, 22ax-mp 5 . . . . 5 suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅
24 df-1o 8388 . . . . 5 1o = suc ∅
2523, 24eqtr4i 2755 . . . 4 suc ( bday “ ({ 0s } ∪ ∅)) = 1o
269, 25sseqtri 3984 . . 3 ( bday ‘({ 0s } |s ∅)) ⊆ 1o
27 ssrab2 4031 . . . . . 6 {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
28 fnssintima 7299 . . . . . 6 (( bday Fn No ∧ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦)))
2912, 27, 28mp2an 692 . . . . 5 (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦))
30 sneq 4587 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130breq2d 5104 . . . . . . . 8 (𝑥 = 𝑦 → ({ 0s } <<s {𝑥} ↔ { 0s } <<s {𝑦}))
3230breq1d 5102 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s ∅ ↔ {𝑦} <<s ∅))
3331, 32anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → (({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
3433elrab 3648 . . . . . 6 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ↔ (𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
35 sltirr 27656 . . . . . . . . . . . . 13 ( 0s No → ¬ 0s <s 0s )
363, 35ax-mp 5 . . . . . . . . . . . 12 ¬ 0s <s 0s
37 breq2 5096 . . . . . . . . . . . 12 (𝑦 = 0s → ( 0s <s 𝑦 ↔ 0s <s 0s ))
3836, 37mtbiri 327 . . . . . . . . . . 11 (𝑦 = 0s → ¬ 0s <s 𝑦)
3938necon2ai 2954 . . . . . . . . . 10 ( 0s <s 𝑦𝑦 ≠ 0s )
40 bday0b 27744 . . . . . . . . . . 11 (𝑦 No → (( bday 𝑦) = ∅ ↔ 𝑦 = 0s ))
4140necon3bid 2969 . . . . . . . . . 10 (𝑦 No → (( bday 𝑦) ≠ ∅ ↔ 𝑦 ≠ 0s ))
4239, 41imbitrrid 246 . . . . . . . . 9 (𝑦 No → ( 0s <s 𝑦 → ( bday 𝑦) ≠ ∅))
43 bdayelon 27686 . . . . . . . . . . 11 ( bday 𝑦) ∈ On
4443onordi 6420 . . . . . . . . . 10 Ord ( bday 𝑦)
45 ordge1n0 8412 . . . . . . . . . 10 (Ord ( bday 𝑦) → (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅))
4644, 45ax-mp 5 . . . . . . . . 9 (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅)
4742, 46imbitrrdi 252 . . . . . . . 8 (𝑦 No → ( 0s <s 𝑦 → 1o ⊆ ( bday 𝑦)))
48 ssltsep 27701 . . . . . . . . 9 ({ 0s } <<s {𝑦} → ∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧)
49 vex 3440 . . . . . . . . . . . 12 𝑦 ∈ V
50 breq2 5096 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑥 <s 𝑧𝑥 <s 𝑦))
5149, 50ralsn 4633 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑦}𝑥 <s 𝑧𝑥 <s 𝑦)
5251ralbii 3075 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ ∀𝑥 ∈ { 0s }𝑥 <s 𝑦)
533elexi 3459 . . . . . . . . . . 11 0s ∈ V
54 breq1 5095 . . . . . . . . . . 11 (𝑥 = 0s → (𝑥 <s 𝑦 ↔ 0s <s 𝑦))
5553, 54ralsn 4633 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }𝑥 <s 𝑦 ↔ 0s <s 𝑦)
5652, 55bitri 275 . . . . . . . . 9 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ 0s <s 𝑦)
5748, 56sylib 218 . . . . . . . 8 ({ 0s } <<s {𝑦} → 0s <s 𝑦)
5847, 57impel 505 . . . . . . 7 ((𝑦 No ∧ { 0s } <<s {𝑦}) → 1o ⊆ ( bday 𝑦))
5958adantrr 717 . . . . . 6 ((𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)) → 1o ⊆ ( bday 𝑦))
6034, 59sylbi 217 . . . . 5 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} → 1o ⊆ ( bday 𝑦))
6129, 60mprgbir 3051 . . . 4 1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
62 scutbday 27715 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}))
637, 62ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
6461, 63sseqtrri 3985 . . 3 1o ⊆ ( bday ‘({ 0s } |s ∅))
6526, 64eqssi 3952 . 2 ( bday ‘({ 0s } |s ∅)) = 1o
662, 65eqtri 2752 1 ( bday ‘ 1s ) = 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3394  cun 3901  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   cuni 4858   cint 4896   class class class wbr 5092  cima 5622  Ord word 6306  suc csuc 6309   Fn wfn 6477  cfv 6482  (class class class)co 7349  1oc1o 8381   No csur 27549   <s cslt 27550   bday cbday 27551   <<s csslt 27691   |s cscut 27693   0s c0s 27736   1s c1s 27737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739
This theorem is referenced by:  cuteq1  27748  left1s  27809  right1s  27810
  Copyright terms: Public domain W3C validator