| Step | Hyp | Ref
| Expression |
| 1 | | df-1s 27794 |
. . 3
⊢
1s = ({ 0s } |s ∅) |
| 2 | 1 | fveq2i 6884 |
. 2
⊢ ( bday ‘ 1s ) = (
bday ‘({ 0s } |s ∅)) |
| 3 | | 0sno 27795 |
. . . . . . 7
⊢
0s ∈ No |
| 4 | | snelpwi 5423 |
. . . . . . 7
⊢ (
0s ∈ No → { 0s }
∈ 𝒫 No ) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ {
0s } ∈ 𝒫 No
|
| 6 | | nulssgt 27767 |
. . . . . 6
⊢ ({
0s } ∈ 𝒫 No → {
0s } <<s ∅) |
| 7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢ {
0s } <<s ∅ |
| 8 | | scutbdaybnd2 27785 |
. . . . 5
⊢ ({
0s } <<s ∅ → ( bday
‘({ 0s } |s ∅)) ⊆ suc ∪ ( bday “ ({
0s } ∪ ∅))) |
| 9 | 7, 8 | ax-mp 5 |
. . . 4
⊢ ( bday ‘({ 0s } |s ∅)) ⊆ suc
∪ ( bday “ ({
0s } ∪ ∅)) |
| 10 | | un0 4374 |
. . . . . . . . . 10
⊢ ({
0s } ∪ ∅) = { 0s } |
| 11 | 10 | imaeq2i 6050 |
. . . . . . . . 9
⊢ ( bday “ ({ 0s } ∪ ∅)) =
( bday “ { 0s
}) |
| 12 | | bdayfn 27742 |
. . . . . . . . . 10
⊢ bday Fn No
|
| 13 | | fnsnfv 6963 |
. . . . . . . . . 10
⊢ (( bday Fn No ∧
0s ∈ No ) → {( bday ‘ 0s )} = (
bday “ { 0s })) |
| 14 | 12, 3, 13 | mp2an 692 |
. . . . . . . . 9
⊢ {( bday ‘ 0s )} = (
bday “ { 0s }) |
| 15 | | bday0s 27797 |
. . . . . . . . . 10
⊢ ( bday ‘ 0s ) = ∅ |
| 16 | 15 | sneqi 4617 |
. . . . . . . . 9
⊢ {( bday ‘ 0s )} =
{∅} |
| 17 | 11, 14, 16 | 3eqtr2i 2765 |
. . . . . . . 8
⊢ ( bday “ ({ 0s } ∪ ∅)) =
{∅} |
| 18 | 17 | unieqi 4900 |
. . . . . . 7
⊢ ∪ ( bday “ ({
0s } ∪ ∅)) = ∪
{∅} |
| 19 | | 0ex 5282 |
. . . . . . . 8
⊢ ∅
∈ V |
| 20 | 19 | unisn 4907 |
. . . . . . 7
⊢ ∪ {∅} = ∅ |
| 21 | 18, 20 | eqtri 2759 |
. . . . . 6
⊢ ∪ ( bday “ ({
0s } ∪ ∅)) = ∅ |
| 22 | | suceq 6424 |
. . . . . 6
⊢ (∪ ( bday “ ({
0s } ∪ ∅)) = ∅ → suc ∪ ( bday “ ({
0s } ∪ ∅)) = suc ∅) |
| 23 | 21, 22 | ax-mp 5 |
. . . . 5
⊢ suc ∪ ( bday “ ({
0s } ∪ ∅)) = suc ∅ |
| 24 | | df-1o 8485 |
. . . . 5
⊢
1o = suc ∅ |
| 25 | 23, 24 | eqtr4i 2762 |
. . . 4
⊢ suc ∪ ( bday “ ({
0s } ∪ ∅)) = 1o |
| 26 | 9, 25 | sseqtri 4012 |
. . 3
⊢ ( bday ‘({ 0s } |s ∅)) ⊆
1o |
| 27 | | ssrab2 4060 |
. . . . . 6
⊢ {𝑥 ∈
No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No |
| 28 | | fnssintima 7360 |
. . . . . 6
⊢ (( bday Fn No ∧ {𝑥 ∈
No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (1o ⊆ ∩ ( bday “ {𝑥 ∈
No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 ∈ No
∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆
( bday ‘𝑦))) |
| 29 | 12, 27, 28 | mp2an 692 |
. . . . 5
⊢
(1o ⊆ ∩ ( bday “ {𝑥 ∈ No
∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 ∈ No
∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆
( bday ‘𝑦)) |
| 30 | | sneq 4616 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 31 | 30 | breq2d 5136 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ({ 0s } <<s {𝑥} ↔ { 0s }
<<s {𝑦})) |
| 32 | 30 | breq1d 5134 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ({𝑥} <<s ∅ ↔ {𝑦} <<s
∅)) |
| 33 | 31, 32 | anbi12d 632 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({ 0s
} <<s {𝑦} ∧
{𝑦} <<s
∅))) |
| 34 | 33 | elrab 3676 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ No
∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ↔ (𝑦 ∈
No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅))) |
| 35 | | sltirr 27715 |
. . . . . . . . . . . . 13
⊢ (
0s ∈ No → ¬
0s <s 0s ) |
| 36 | 3, 35 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ¬
0s <s 0s |
| 37 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0s → (
0s <s 𝑦
↔ 0s <s 0s )) |
| 38 | 36, 37 | mtbiri 327 |
. . . . . . . . . . 11
⊢ (𝑦 = 0s → ¬
0s <s 𝑦) |
| 39 | 38 | necon2ai 2962 |
. . . . . . . . . 10
⊢ (
0s <s 𝑦
→ 𝑦 ≠ 0s
) |
| 40 | | bday0b 27799 |
. . . . . . . . . . 11
⊢ (𝑦 ∈
No → (( bday ‘𝑦) = ∅ ↔ 𝑦 = 0s
)) |
| 41 | 40 | necon3bid 2977 |
. . . . . . . . . 10
⊢ (𝑦 ∈
No → (( bday ‘𝑦) ≠ ∅ ↔ 𝑦 ≠ 0s
)) |
| 42 | 39, 41 | imbitrrid 246 |
. . . . . . . . 9
⊢ (𝑦 ∈
No → ( 0s <s 𝑦 → ( bday
‘𝑦) ≠
∅)) |
| 43 | | bdayelon 27745 |
. . . . . . . . . . 11
⊢ ( bday ‘𝑦) ∈ On |
| 44 | 43 | onordi 6470 |
. . . . . . . . . 10
⊢ Ord
( bday ‘𝑦) |
| 45 | | ordge1n0 8511 |
. . . . . . . . . 10
⊢ (Ord
( bday ‘𝑦) → (1o ⊆ ( bday ‘𝑦) ↔ ( bday
‘𝑦) ≠
∅)) |
| 46 | 44, 45 | ax-mp 5 |
. . . . . . . . 9
⊢
(1o ⊆ ( bday ‘𝑦) ↔ (
bday ‘𝑦) ≠
∅) |
| 47 | 42, 46 | imbitrrdi 252 |
. . . . . . . 8
⊢ (𝑦 ∈
No → ( 0s <s 𝑦 → 1o ⊆ ( bday ‘𝑦))) |
| 48 | | ssltsep 27759 |
. . . . . . . . 9
⊢ ({
0s } <<s {𝑦} → ∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧) |
| 49 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 50 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (𝑥 <s 𝑧 ↔ 𝑥 <s 𝑦)) |
| 51 | 49, 50 | ralsn 4662 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
{𝑦}𝑥 <s 𝑧 ↔ 𝑥 <s 𝑦) |
| 52 | 51 | ralbii 3083 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈ {
0s }∀𝑧
∈ {𝑦}𝑥 <s 𝑧 ↔ ∀𝑥 ∈ { 0s }𝑥 <s 𝑦) |
| 53 | 3 | elexi 3487 |
. . . . . . . . . . 11
⊢
0s ∈ V |
| 54 | | breq1 5127 |
. . . . . . . . . . 11
⊢ (𝑥 = 0s → (𝑥 <s 𝑦 ↔ 0s <s 𝑦)) |
| 55 | 53, 54 | ralsn 4662 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈ {
0s }𝑥 <s
𝑦 ↔ 0s
<s 𝑦) |
| 56 | 52, 55 | bitri 275 |
. . . . . . . . 9
⊢
(∀𝑥 ∈ {
0s }∀𝑧
∈ {𝑦}𝑥 <s 𝑧 ↔ 0s <s 𝑦) |
| 57 | 48, 56 | sylib 218 |
. . . . . . . 8
⊢ ({
0s } <<s {𝑦} → 0s <s 𝑦) |
| 58 | 47, 57 | impel 505 |
. . . . . . 7
⊢ ((𝑦 ∈
No ∧ { 0s } <<s {𝑦}) → 1o ⊆ ( bday ‘𝑦)) |
| 59 | 58 | adantrr 717 |
. . . . . 6
⊢ ((𝑦 ∈
No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)) → 1o
⊆ ( bday ‘𝑦)) |
| 60 | 34, 59 | sylbi 217 |
. . . . 5
⊢ (𝑦 ∈ {𝑥 ∈ No
∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} → 1o
⊆ ( bday ‘𝑦)) |
| 61 | 29, 60 | mprgbir 3059 |
. . . 4
⊢
1o ⊆ ∩ ( bday “ {𝑥 ∈ No
∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 62 | | scutbday 27773 |
. . . . 5
⊢ ({
0s } <<s ∅ → ( bday
‘({ 0s } |s ∅)) = ∩
( bday “ {𝑥 ∈ No
∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})) |
| 63 | 7, 62 | ax-mp 5 |
. . . 4
⊢ ( bday ‘({ 0s } |s ∅)) = ∩ ( bday “ {𝑥 ∈
No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 64 | 61, 63 | sseqtrri 4013 |
. . 3
⊢
1o ⊆ ( bday ‘({
0s } |s ∅)) |
| 65 | 26, 64 | eqssi 3980 |
. 2
⊢ ( bday ‘({ 0s } |s ∅)) =
1o |
| 66 | 2, 65 | eqtri 2759 |
1
⊢ ( bday ‘ 1s ) =
1o |