MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday1s Structured version   Visualization version   GIF version

Theorem bday1s 27894
Description: The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
bday1s ( bday ‘ 1s ) = 1o

Proof of Theorem bday1s
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1s 27888 . . 3 1s = ({ 0s } |s ∅)
21fveq2i 6923 . 2 ( bday ‘ 1s ) = ( bday ‘({ 0s } |s ∅))
3 0sno 27889 . . . . . . 7 0s No
4 snelpwi 5463 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
53, 4ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
6 nulssgt 27861 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
75, 6ax-mp 5 . . . . 5 { 0s } <<s ∅
8 scutbdaybnd2 27879 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅)))
97, 8ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅))
10 un0 4417 . . . . . . . . . 10 ({ 0s } ∪ ∅) = { 0s }
1110imaeq2i 6087 . . . . . . . . 9 ( bday “ ({ 0s } ∪ ∅)) = ( bday “ { 0s })
12 bdayfn 27836 . . . . . . . . . 10 bday Fn No
13 fnsnfv 7001 . . . . . . . . . 10 (( bday Fn No ∧ 0s No ) → {( bday ‘ 0s )} = ( bday “ { 0s }))
1412, 3, 13mp2an 691 . . . . . . . . 9 {( bday ‘ 0s )} = ( bday “ { 0s })
15 bday0s 27891 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
1615sneqi 4659 . . . . . . . . 9 {( bday ‘ 0s )} = {∅}
1711, 14, 163eqtr2i 2774 . . . . . . . 8 ( bday “ ({ 0s } ∪ ∅)) = {∅}
1817unieqi 4943 . . . . . . 7 ( bday “ ({ 0s } ∪ ∅)) = {∅}
19 0ex 5325 . . . . . . . 8 ∅ ∈ V
2019unisn 4950 . . . . . . 7 {∅} = ∅
2118, 20eqtri 2768 . . . . . 6 ( bday “ ({ 0s } ∪ ∅)) = ∅
22 suceq 6461 . . . . . 6 ( ( bday “ ({ 0s } ∪ ∅)) = ∅ → suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅)
2321, 22ax-mp 5 . . . . 5 suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅
24 df-1o 8522 . . . . 5 1o = suc ∅
2523, 24eqtr4i 2771 . . . 4 suc ( bday “ ({ 0s } ∪ ∅)) = 1o
269, 25sseqtri 4045 . . 3 ( bday ‘({ 0s } |s ∅)) ⊆ 1o
27 ssrab2 4103 . . . . . 6 {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
28 fnssintima 7398 . . . . . 6 (( bday Fn No ∧ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦)))
2912, 27, 28mp2an 691 . . . . 5 (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦))
30 sneq 4658 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130breq2d 5178 . . . . . . . 8 (𝑥 = 𝑦 → ({ 0s } <<s {𝑥} ↔ { 0s } <<s {𝑦}))
3230breq1d 5176 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s ∅ ↔ {𝑦} <<s ∅))
3331, 32anbi12d 631 . . . . . . 7 (𝑥 = 𝑦 → (({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
3433elrab 3708 . . . . . 6 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ↔ (𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
35 sltirr 27809 . . . . . . . . . . . . 13 ( 0s No → ¬ 0s <s 0s )
363, 35ax-mp 5 . . . . . . . . . . . 12 ¬ 0s <s 0s
37 breq2 5170 . . . . . . . . . . . 12 (𝑦 = 0s → ( 0s <s 𝑦 ↔ 0s <s 0s ))
3836, 37mtbiri 327 . . . . . . . . . . 11 (𝑦 = 0s → ¬ 0s <s 𝑦)
3938necon2ai 2976 . . . . . . . . . 10 ( 0s <s 𝑦𝑦 ≠ 0s )
40 bday0b 27893 . . . . . . . . . . 11 (𝑦 No → (( bday 𝑦) = ∅ ↔ 𝑦 = 0s ))
4140necon3bid 2991 . . . . . . . . . 10 (𝑦 No → (( bday 𝑦) ≠ ∅ ↔ 𝑦 ≠ 0s ))
4239, 41imbitrrid 246 . . . . . . . . 9 (𝑦 No → ( 0s <s 𝑦 → ( bday 𝑦) ≠ ∅))
43 bdayelon 27839 . . . . . . . . . . 11 ( bday 𝑦) ∈ On
4443onordi 6506 . . . . . . . . . 10 Ord ( bday 𝑦)
45 ordge1n0 8550 . . . . . . . . . 10 (Ord ( bday 𝑦) → (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅))
4644, 45ax-mp 5 . . . . . . . . 9 (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅)
4742, 46imbitrrdi 252 . . . . . . . 8 (𝑦 No → ( 0s <s 𝑦 → 1o ⊆ ( bday 𝑦)))
48 ssltsep 27853 . . . . . . . . 9 ({ 0s } <<s {𝑦} → ∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧)
49 vex 3492 . . . . . . . . . . . 12 𝑦 ∈ V
50 breq2 5170 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑥 <s 𝑧𝑥 <s 𝑦))
5149, 50ralsn 4705 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑦}𝑥 <s 𝑧𝑥 <s 𝑦)
5251ralbii 3099 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ ∀𝑥 ∈ { 0s }𝑥 <s 𝑦)
533elexi 3511 . . . . . . . . . . 11 0s ∈ V
54 breq1 5169 . . . . . . . . . . 11 (𝑥 = 0s → (𝑥 <s 𝑦 ↔ 0s <s 𝑦))
5553, 54ralsn 4705 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }𝑥 <s 𝑦 ↔ 0s <s 𝑦)
5652, 55bitri 275 . . . . . . . . 9 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ 0s <s 𝑦)
5748, 56sylib 218 . . . . . . . 8 ({ 0s } <<s {𝑦} → 0s <s 𝑦)
5847, 57impel 505 . . . . . . 7 ((𝑦 No ∧ { 0s } <<s {𝑦}) → 1o ⊆ ( bday 𝑦))
5958adantrr 716 . . . . . 6 ((𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)) → 1o ⊆ ( bday 𝑦))
6034, 59sylbi 217 . . . . 5 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} → 1o ⊆ ( bday 𝑦))
6129, 60mprgbir 3074 . . . 4 1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
62 scutbday 27867 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}))
637, 62ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
6461, 63sseqtrri 4046 . . 3 1o ⊆ ( bday ‘({ 0s } |s ∅))
6526, 64eqssi 4025 . 2 ( bday ‘({ 0s } |s ∅)) = 1o
662, 65eqtri 2768 1 ( bday ‘ 1s ) = 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   cint 4970   class class class wbr 5166  cima 5703  Ord word 6394  suc csuc 6397   Fn wfn 6568  cfv 6573  (class class class)co 7448  1oc1o 8515   No csur 27702   <s cslt 27703   bday cbday 27704   <<s csslt 27843   |s cscut 27845   0s c0s 27885   1s c1s 27886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888
This theorem is referenced by:  cuteq1  27896  left1s  27951  right1s  27952  pw2bday  28436
  Copyright terms: Public domain W3C validator