MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday1s Structured version   Visualization version   GIF version

Theorem bday1s 27332
Description: The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
bday1s ( bday ‘ 1s ) = 1o

Proof of Theorem bday1s
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1s 27326 . . 3 1s = ({ 0s } |s ∅)
21fveq2i 6895 . 2 ( bday ‘ 1s ) = ( bday ‘({ 0s } |s ∅))
3 0sno 27327 . . . . . . 7 0s No
4 snelpwi 5444 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
53, 4ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
6 nulssgt 27299 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
75, 6ax-mp 5 . . . . 5 { 0s } <<s ∅
8 scutbdaybnd2 27317 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅)))
97, 8ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅))
10 un0 4391 . . . . . . . . . 10 ({ 0s } ∪ ∅) = { 0s }
1110imaeq2i 6058 . . . . . . . . 9 ( bday “ ({ 0s } ∪ ∅)) = ( bday “ { 0s })
12 bdayfn 27275 . . . . . . . . . 10 bday Fn No
13 fnsnfv 6971 . . . . . . . . . 10 (( bday Fn No ∧ 0s No ) → {( bday ‘ 0s )} = ( bday “ { 0s }))
1412, 3, 13mp2an 691 . . . . . . . . 9 {( bday ‘ 0s )} = ( bday “ { 0s })
15 bday0s 27329 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
1615sneqi 4640 . . . . . . . . 9 {( bday ‘ 0s )} = {∅}
1711, 14, 163eqtr2i 2767 . . . . . . . 8 ( bday “ ({ 0s } ∪ ∅)) = {∅}
1817unieqi 4922 . . . . . . 7 ( bday “ ({ 0s } ∪ ∅)) = {∅}
19 0ex 5308 . . . . . . . 8 ∅ ∈ V
2019unisn 4931 . . . . . . 7 {∅} = ∅
2118, 20eqtri 2761 . . . . . 6 ( bday “ ({ 0s } ∪ ∅)) = ∅
22 suceq 6431 . . . . . 6 ( ( bday “ ({ 0s } ∪ ∅)) = ∅ → suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅)
2321, 22ax-mp 5 . . . . 5 suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅
24 df-1o 8466 . . . . 5 1o = suc ∅
2523, 24eqtr4i 2764 . . . 4 suc ( bday “ ({ 0s } ∪ ∅)) = 1o
269, 25sseqtri 4019 . . 3 ( bday ‘({ 0s } |s ∅)) ⊆ 1o
27 ssrab2 4078 . . . . . 6 {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
28 fnssintima 7359 . . . . . 6 (( bday Fn No ∧ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦)))
2912, 27, 28mp2an 691 . . . . 5 (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦))
30 sneq 4639 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130breq2d 5161 . . . . . . . 8 (𝑥 = 𝑦 → ({ 0s } <<s {𝑥} ↔ { 0s } <<s {𝑦}))
3230breq1d 5159 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s ∅ ↔ {𝑦} <<s ∅))
3331, 32anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → (({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
3433elrab 3684 . . . . . 6 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ↔ (𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
35 sltirr 27249 . . . . . . . . . . . . 13 ( 0s No → ¬ 0s <s 0s )
363, 35ax-mp 5 . . . . . . . . . . . 12 ¬ 0s <s 0s
37 breq2 5153 . . . . . . . . . . . 12 (𝑦 = 0s → ( 0s <s 𝑦 ↔ 0s <s 0s ))
3836, 37mtbiri 327 . . . . . . . . . . 11 (𝑦 = 0s → ¬ 0s <s 𝑦)
3938necon2ai 2971 . . . . . . . . . 10 ( 0s <s 𝑦𝑦 ≠ 0s )
40 bday0b 27331 . . . . . . . . . . 11 (𝑦 No → (( bday 𝑦) = ∅ ↔ 𝑦 = 0s ))
4140necon3bid 2986 . . . . . . . . . 10 (𝑦 No → (( bday 𝑦) ≠ ∅ ↔ 𝑦 ≠ 0s ))
4239, 41imbitrrid 245 . . . . . . . . 9 (𝑦 No → ( 0s <s 𝑦 → ( bday 𝑦) ≠ ∅))
43 bdayelon 27278 . . . . . . . . . . 11 ( bday 𝑦) ∈ On
4443onordi 6476 . . . . . . . . . 10 Ord ( bday 𝑦)
45 ordge1n0 8494 . . . . . . . . . 10 (Ord ( bday 𝑦) → (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅))
4644, 45ax-mp 5 . . . . . . . . 9 (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅)
4742, 46syl6ibr 252 . . . . . . . 8 (𝑦 No → ( 0s <s 𝑦 → 1o ⊆ ( bday 𝑦)))
48 ssltsep 27292 . . . . . . . . 9 ({ 0s } <<s {𝑦} → ∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧)
49 vex 3479 . . . . . . . . . . . 12 𝑦 ∈ V
50 breq2 5153 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑥 <s 𝑧𝑥 <s 𝑦))
5149, 50ralsn 4686 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑦}𝑥 <s 𝑧𝑥 <s 𝑦)
5251ralbii 3094 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ ∀𝑥 ∈ { 0s }𝑥 <s 𝑦)
533elexi 3494 . . . . . . . . . . 11 0s ∈ V
54 breq1 5152 . . . . . . . . . . 11 (𝑥 = 0s → (𝑥 <s 𝑦 ↔ 0s <s 𝑦))
5553, 54ralsn 4686 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }𝑥 <s 𝑦 ↔ 0s <s 𝑦)
5652, 55bitri 275 . . . . . . . . 9 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ 0s <s 𝑦)
5748, 56sylib 217 . . . . . . . 8 ({ 0s } <<s {𝑦} → 0s <s 𝑦)
5847, 57impel 507 . . . . . . 7 ((𝑦 No ∧ { 0s } <<s {𝑦}) → 1o ⊆ ( bday 𝑦))
5958adantrr 716 . . . . . 6 ((𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)) → 1o ⊆ ( bday 𝑦))
6034, 59sylbi 216 . . . . 5 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} → 1o ⊆ ( bday 𝑦))
6129, 60mprgbir 3069 . . . 4 1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
62 scutbday 27305 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}))
637, 62ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
6461, 63sseqtrri 4020 . . 3 1o ⊆ ( bday ‘({ 0s } |s ∅))
6526, 64eqssi 3999 . 2 ( bday ‘({ 0s } |s ∅)) = 1o
662, 65eqtri 2761 1 ( bday ‘ 1s ) = 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  {crab 3433  cun 3947  wss 3949  c0 4323  𝒫 cpw 4603  {csn 4629   cuni 4909   cint 4951   class class class wbr 5149  cima 5680  Ord word 6364  suc csuc 6367   Fn wfn 6539  cfv 6544  (class class class)co 7409  1oc1o 8459   No csur 27143   <s cslt 27144   bday cbday 27145   <<s csslt 27282   |s cscut 27284   0s c0s 27323   1s c1s 27324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148  df-sslt 27283  df-scut 27285  df-0s 27325  df-1s 27326
This theorem is referenced by:  cuteq1  27334  left1s  27389  right1s  27390
  Copyright terms: Public domain W3C validator