MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday1s Structured version   Visualization version   GIF version

Theorem bday1s 27877
Description: The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
bday1s ( bday ‘ 1s ) = 1o

Proof of Theorem bday1s
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1s 27871 . . 3 1s = ({ 0s } |s ∅)
21fveq2i 6908 . 2 ( bday ‘ 1s ) = ( bday ‘({ 0s } |s ∅))
3 0sno 27872 . . . . . . 7 0s No
4 snelpwi 5447 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
53, 4ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
6 nulssgt 27844 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
75, 6ax-mp 5 . . . . 5 { 0s } <<s ∅
8 scutbdaybnd2 27862 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅)))
97, 8ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) ⊆ suc ( bday “ ({ 0s } ∪ ∅))
10 un0 4393 . . . . . . . . . 10 ({ 0s } ∪ ∅) = { 0s }
1110imaeq2i 6075 . . . . . . . . 9 ( bday “ ({ 0s } ∪ ∅)) = ( bday “ { 0s })
12 bdayfn 27819 . . . . . . . . . 10 bday Fn No
13 fnsnfv 6987 . . . . . . . . . 10 (( bday Fn No ∧ 0s No ) → {( bday ‘ 0s )} = ( bday “ { 0s }))
1412, 3, 13mp2an 692 . . . . . . . . 9 {( bday ‘ 0s )} = ( bday “ { 0s })
15 bday0s 27874 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
1615sneqi 4636 . . . . . . . . 9 {( bday ‘ 0s )} = {∅}
1711, 14, 163eqtr2i 2770 . . . . . . . 8 ( bday “ ({ 0s } ∪ ∅)) = {∅}
1817unieqi 4918 . . . . . . 7 ( bday “ ({ 0s } ∪ ∅)) = {∅}
19 0ex 5306 . . . . . . . 8 ∅ ∈ V
2019unisn 4925 . . . . . . 7 {∅} = ∅
2118, 20eqtri 2764 . . . . . 6 ( bday “ ({ 0s } ∪ ∅)) = ∅
22 suceq 6449 . . . . . 6 ( ( bday “ ({ 0s } ∪ ∅)) = ∅ → suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅)
2321, 22ax-mp 5 . . . . 5 suc ( bday “ ({ 0s } ∪ ∅)) = suc ∅
24 df-1o 8507 . . . . 5 1o = suc ∅
2523, 24eqtr4i 2767 . . . 4 suc ( bday “ ({ 0s } ∪ ∅)) = 1o
269, 25sseqtri 4031 . . 3 ( bday ‘({ 0s } |s ∅)) ⊆ 1o
27 ssrab2 4079 . . . . . 6 {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
28 fnssintima 7383 . . . . . 6 (( bday Fn No ∧ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦)))
2912, 27, 28mp2an 692 . . . . 5 (1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}1o ⊆ ( bday 𝑦))
30 sneq 4635 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130breq2d 5154 . . . . . . . 8 (𝑥 = 𝑦 → ({ 0s } <<s {𝑥} ↔ { 0s } <<s {𝑦}))
3230breq1d 5152 . . . . . . . 8 (𝑥 = 𝑦 → ({𝑥} <<s ∅ ↔ {𝑦} <<s ∅))
3331, 32anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → (({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
3433elrab 3691 . . . . . 6 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} ↔ (𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)))
35 sltirr 27792 . . . . . . . . . . . . 13 ( 0s No → ¬ 0s <s 0s )
363, 35ax-mp 5 . . . . . . . . . . . 12 ¬ 0s <s 0s
37 breq2 5146 . . . . . . . . . . . 12 (𝑦 = 0s → ( 0s <s 𝑦 ↔ 0s <s 0s ))
3836, 37mtbiri 327 . . . . . . . . . . 11 (𝑦 = 0s → ¬ 0s <s 𝑦)
3938necon2ai 2969 . . . . . . . . . 10 ( 0s <s 𝑦𝑦 ≠ 0s )
40 bday0b 27876 . . . . . . . . . . 11 (𝑦 No → (( bday 𝑦) = ∅ ↔ 𝑦 = 0s ))
4140necon3bid 2984 . . . . . . . . . 10 (𝑦 No → (( bday 𝑦) ≠ ∅ ↔ 𝑦 ≠ 0s ))
4239, 41imbitrrid 246 . . . . . . . . 9 (𝑦 No → ( 0s <s 𝑦 → ( bday 𝑦) ≠ ∅))
43 bdayelon 27822 . . . . . . . . . . 11 ( bday 𝑦) ∈ On
4443onordi 6494 . . . . . . . . . 10 Ord ( bday 𝑦)
45 ordge1n0 8533 . . . . . . . . . 10 (Ord ( bday 𝑦) → (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅))
4644, 45ax-mp 5 . . . . . . . . 9 (1o ⊆ ( bday 𝑦) ↔ ( bday 𝑦) ≠ ∅)
4742, 46imbitrrdi 252 . . . . . . . 8 (𝑦 No → ( 0s <s 𝑦 → 1o ⊆ ( bday 𝑦)))
48 ssltsep 27836 . . . . . . . . 9 ({ 0s } <<s {𝑦} → ∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧)
49 vex 3483 . . . . . . . . . . . 12 𝑦 ∈ V
50 breq2 5146 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑥 <s 𝑧𝑥 <s 𝑦))
5149, 50ralsn 4680 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑦}𝑥 <s 𝑧𝑥 <s 𝑦)
5251ralbii 3092 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ ∀𝑥 ∈ { 0s }𝑥 <s 𝑦)
533elexi 3502 . . . . . . . . . . 11 0s ∈ V
54 breq1 5145 . . . . . . . . . . 11 (𝑥 = 0s → (𝑥 <s 𝑦 ↔ 0s <s 𝑦))
5553, 54ralsn 4680 . . . . . . . . . 10 (∀𝑥 ∈ { 0s }𝑥 <s 𝑦 ↔ 0s <s 𝑦)
5652, 55bitri 275 . . . . . . . . 9 (∀𝑥 ∈ { 0s }∀𝑧 ∈ {𝑦}𝑥 <s 𝑧 ↔ 0s <s 𝑦)
5748, 56sylib 218 . . . . . . . 8 ({ 0s } <<s {𝑦} → 0s <s 𝑦)
5847, 57impel 505 . . . . . . 7 ((𝑦 No ∧ { 0s } <<s {𝑦}) → 1o ⊆ ( bday 𝑦))
5958adantrr 717 . . . . . 6 ((𝑦 No ∧ ({ 0s } <<s {𝑦} ∧ {𝑦} <<s ∅)) → 1o ⊆ ( bday 𝑦))
6034, 59sylbi 217 . . . . 5 (𝑦 ∈ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)} → 1o ⊆ ( bday 𝑦))
6129, 60mprgbir 3067 . . . 4 1o ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
62 scutbday 27850 . . . . 5 ({ 0s } <<s ∅ → ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)}))
637, 62ax-mp 5 . . . 4 ( bday ‘({ 0s } |s ∅)) = ( bday “ {𝑥 No ∣ ({ 0s } <<s {𝑥} ∧ {𝑥} <<s ∅)})
6461, 63sseqtrri 4032 . . 3 1o ⊆ ( bday ‘({ 0s } |s ∅))
6526, 64eqssi 3999 . 2 ( bday ‘({ 0s } |s ∅)) = 1o
662, 65eqtri 2764 1 ( bday ‘ 1s ) = 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  {crab 3435  cun 3948  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906   cint 4945   class class class wbr 5142  cima 5687  Ord word 6382  suc csuc 6385   Fn wfn 6555  cfv 6560  (class class class)co 7432  1oc1o 8500   No csur 27685   <s cslt 27686   bday cbday 27687   <<s csslt 27826   |s cscut 27828   0s c0s 27868   1s c1s 27869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1o 8507  df-2o 8508  df-no 27688  df-slt 27689  df-bday 27690  df-sslt 27827  df-scut 27829  df-0s 27870  df-1s 27871
This theorem is referenced by:  cuteq1  27879  left1s  27934  right1s  27935  pw2bday  28419
  Copyright terms: Public domain W3C validator