Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sssslt1 | Structured version Visualization version GIF version |
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
Ref | Expression |
---|---|
sssslt1 | ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltex1 33981 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐴 ∈ V) |
3 | simpr 485 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) | |
4 | 2, 3 | ssexd 5248 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ V) |
5 | ssltex2 33982 | . . 3 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ∈ V) |
7 | ssltss1 33983 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐴 ⊆ No ) |
9 | 3, 8 | sstrd 3931 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ No ) |
10 | ssltss2 33984 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ⊆ No ) |
12 | ssltsep 33985 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | |
13 | ssralv 3987 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) | |
14 | 12, 13 | mpan9 507 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
15 | 9, 11, 14 | 3jca 1127 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐶 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
16 | brsslt 33980 | . 2 ⊢ (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
17 | 4, 6, 15, 16 | syl21anbrc 1343 | 1 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 No csur 33843 <s cslt 33844 <<s csslt 33975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-sslt 33976 |
This theorem is referenced by: scutun12 34004 |
Copyright terms: Public domain | W3C validator |