Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssslt1 Structured version   Visualization version   GIF version

Theorem sssslt1 33726
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)

Proof of Theorem sssslt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33718 . . . 4 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 484 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 ∈ V)
3 simpr 488 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶𝐴)
42, 3ssexd 5217 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 ∈ V)
5 ssltex2 33719 . . 3 (𝐴 <<s 𝐵𝐵 ∈ V)
65adantr 484 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 ∈ V)
7 ssltss1 33720 . . . . 5 (𝐴 <<s 𝐵𝐴 No )
87adantr 484 . . . 4 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 No )
93, 8sstrd 3911 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 No )
10 ssltss2 33721 . . . 4 (𝐴 <<s 𝐵𝐵 No )
1110adantr 484 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 No )
12 ssltsep 33722 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
13 ssralv 3967 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
1412, 13mpan9 510 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)
159, 11, 143jca 1130 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
16 brsslt 33717 . 2 (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)))
174, 6, 15, 16syl21anbrc 1346 1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2110  wral 3061  Vcvv 3408  wss 3866   class class class wbr 5053   No csur 33580   <s cslt 33581   <<s csslt 33712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-sslt 33713
This theorem is referenced by:  scutun12  33741
  Copyright terms: Public domain W3C validator