Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssslt1 Structured version   Visualization version   GIF version

Theorem sssslt1 33260
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)

Proof of Theorem sssslt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33255 . . . 4 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 483 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 ∈ V)
3 simpr 487 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶𝐴)
42, 3ssexd 5228 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 ∈ V)
5 ssltex2 33256 . . 3 (𝐴 <<s 𝐵𝐵 ∈ V)
65adantr 483 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 ∈ V)
7 ssltss1 33257 . . . . 5 (𝐴 <<s 𝐵𝐴 No )
87adantr 483 . . . 4 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 No )
93, 8sstrd 3977 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 No )
10 ssltss2 33258 . . . 4 (𝐴 <<s 𝐵𝐵 No )
1110adantr 483 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 No )
12 ssltsep 33259 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
13 ssralv 4033 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
1412, 13mpan9 509 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)
159, 11, 143jca 1124 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
16 brsslt 33254 . 2 (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)))
174, 6, 15, 16syl21anbrc 1340 1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  wral 3138  Vcvv 3494  wss 3936   class class class wbr 5066   No csur 33147   <s cslt 33148   <<s csslt 33250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-sslt 33251
This theorem is referenced by:  scutun12  33271
  Copyright terms: Public domain W3C validator