| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssslt1 | Structured version Visualization version GIF version | ||
| Description: Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| sssslt1 | ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltex1 27727 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐴 ∈ V) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) | |
| 4 | 2, 3 | ssexd 5262 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ V) |
| 5 | ssltex2 27728 | . . 3 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ∈ V) |
| 7 | ssltss1 27729 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐴 ⊆ No ) |
| 9 | 3, 8 | sstrd 3945 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ No ) |
| 10 | ssltss2 27730 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ⊆ No ) |
| 12 | ssltsep 27731 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | |
| 13 | ssralv 4003 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) | |
| 14 | 12, 13 | mpan9 506 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
| 15 | 9, 11, 14 | 3jca 1128 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐶 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
| 16 | brsslt 27726 | . 2 ⊢ (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 17 | 4, 6, 15, 16 | syl21anbrc 1345 | 1 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 No csur 27579 <s cslt 27580 <<s csslt 27721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-sslt 27722 |
| This theorem is referenced by: scutun12 27752 eqscut3 27766 cutmax 27879 precsexlem11 28156 |
| Copyright terms: Public domain | W3C validator |