Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssslt1 Structured version   Visualization version   GIF version

Theorem sssslt1 32814
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)

Proof of Theorem sssslt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 32809 . . . 4 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 481 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 ∈ V)
3 simpr 485 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶𝐴)
42, 3ssexd 5112 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 ∈ V)
5 ssltex2 32810 . . 3 (𝐴 <<s 𝐵𝐵 ∈ V)
65adantr 481 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 ∈ V)
7 ssltss1 32811 . . . . 5 (𝐴 <<s 𝐵𝐴 No )
87adantr 481 . . . 4 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 No )
93, 8sstrd 3894 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 No )
10 ssltss2 32812 . . . 4 (𝐴 <<s 𝐵𝐵 No )
1110adantr 481 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 No )
12 ssltsep 32813 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
13 ssralv 3949 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
1412, 13mpan9 507 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)
159, 11, 143jca 1119 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
16 brsslt 32808 . 2 (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)))
174, 6, 15, 16syl21anbrc 1335 1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1078  wcel 2079  wral 3103  Vcvv 3432  wss 3854   class class class wbr 4956   No csur 32701   <s cslt 32702   <<s csslt 32804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-br 4957  df-opab 5019  df-xp 5441  df-sslt 32805
This theorem is referenced by:  scutun12  32825
  Copyright terms: Public domain W3C validator