![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sssslt1 | Structured version Visualization version GIF version |
Description: Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
Ref | Expression |
---|---|
sssslt1 | ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltex1 27148 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
2 | 1 | adantr 482 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐴 ∈ V) |
3 | simpr 486 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) | |
4 | 2, 3 | ssexd 5282 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ V) |
5 | ssltex2 27149 | . . 3 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
6 | 5 | adantr 482 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ∈ V) |
7 | ssltss1 27150 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
8 | 7 | adantr 482 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐴 ⊆ No ) |
9 | 3, 8 | sstrd 3955 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ No ) |
10 | ssltss2 27151 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | |
11 | 10 | adantr 482 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ⊆ No ) |
12 | ssltsep 27152 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | |
13 | ssralv 4011 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) | |
14 | 12, 13 | mpan9 508 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
15 | 9, 11, 14 | 3jca 1129 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐶 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
16 | brsslt 27147 | . 2 ⊢ (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
17 | 4, 6, 15, 16 | syl21anbrc 1345 | 1 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 ∀wral 3061 Vcvv 3444 ⊆ wss 3911 class class class wbr 5106 No csur 27004 <s cslt 27005 <<s csslt 27142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-sslt 27143 |
This theorem is referenced by: scutun12 27171 |
Copyright terms: Public domain | W3C validator |