MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sssslt1 Structured version   Visualization version   GIF version

Theorem sssslt1 27739
Description: Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)

Proof of Theorem sssslt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 27729 . . . 4 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 480 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 ∈ V)
3 simpr 484 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶𝐴)
42, 3ssexd 5266 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 ∈ V)
5 ssltex2 27730 . . 3 (𝐴 <<s 𝐵𝐵 ∈ V)
65adantr 480 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 ∈ V)
7 ssltss1 27731 . . . . 5 (𝐴 <<s 𝐵𝐴 No )
87adantr 480 . . . 4 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 No )
93, 8sstrd 3941 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 No )
10 ssltss2 27732 . . . 4 (𝐴 <<s 𝐵𝐵 No )
1110adantr 480 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 No )
12 ssltsep 27733 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
13 ssralv 3999 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
1412, 13mpan9 506 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)
159, 11, 143jca 1128 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
16 brsslt 27728 . 2 (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)))
174, 6, 15, 16syl21anbrc 1345 1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113  wral 3048  Vcvv 3437  wss 3898   class class class wbr 5095   No csur 27581   <s cslt 27582   <<s csslt 27723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-sslt 27724
This theorem is referenced by:  scutun12  27754  eqscut3  27768  cutmax  27881  precsexlem11  28158
  Copyright terms: Public domain W3C validator