Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssslt1 Structured version   Visualization version   GIF version

Theorem sssslt1 33916
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)

Proof of Theorem sssslt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33908 . . . 4 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 480 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 ∈ V)
3 simpr 484 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶𝐴)
42, 3ssexd 5243 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 ∈ V)
5 ssltex2 33909 . . 3 (𝐴 <<s 𝐵𝐵 ∈ V)
65adantr 480 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 ∈ V)
7 ssltss1 33910 . . . . 5 (𝐴 <<s 𝐵𝐴 No )
87adantr 480 . . . 4 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 No )
93, 8sstrd 3927 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 No )
10 ssltss2 33911 . . . 4 (𝐴 <<s 𝐵𝐵 No )
1110adantr 480 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 No )
12 ssltsep 33912 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
13 ssralv 3983 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
1412, 13mpan9 506 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)
159, 11, 143jca 1126 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
16 brsslt 33907 . 2 (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)))
174, 6, 15, 16syl21anbrc 1342 1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070   No csur 33770   <s cslt 33771   <<s csslt 33902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-sslt 33903
This theorem is referenced by:  scutun12  33931
  Copyright terms: Public domain W3C validator