Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etasslt Structured version   Visualization version   GIF version

Theorem etasslt 33934
Description: A restatement of noeta 33873 using set less than. (Contributed by Scott Fenton, 10-Aug-2024.)
Assertion
Ref Expression
etasslt ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑂

Proof of Theorem etasslt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltss1 33910 . . . . . 6 (𝐴 <<s 𝐵𝐴 No )
2 ssltex1 33908 . . . . . 6 (𝐴 <<s 𝐵𝐴 ∈ V)
31, 2jca 511 . . . . 5 (𝐴 <<s 𝐵 → (𝐴 No 𝐴 ∈ V))
4 ssltss2 33911 . . . . . 6 (𝐴 <<s 𝐵𝐵 No )
5 ssltex2 33909 . . . . . 6 (𝐴 <<s 𝐵𝐵 ∈ V)
64, 5jca 511 . . . . 5 (𝐴 <<s 𝐵 → (𝐵 No 𝐵 ∈ V))
7 ssltsep 33912 . . . . 5 (𝐴 <<s 𝐵 → ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧)
83, 6, 73jca 1126 . . . 4 (𝐴 <<s 𝐵 → ((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧))
983ad2ant1 1131 . . 3 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧))
10 3simpc 1148 . . 3 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂))
11 noeta 33873 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))
129, 10, 11syl2anc 583 . 2 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))
132ad2antrr 722 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 ∈ V)
14 snex 5349 . . . . . . . 8 {𝑥} ∈ V
1513, 14jctir 520 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → (𝐴 ∈ V ∧ {𝑥} ∈ V))
161ad2antrr 722 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 No )
17 snssi 4738 . . . . . . . . 9 (𝑥 No → {𝑥} ⊆ No )
1817ad2antrl 724 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → {𝑥} ⊆ No )
19 simprr1 1219 . . . . . . . . 9 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ∀𝑦𝐴 𝑦 <s 𝑥)
20 vex 3426 . . . . . . . . . . 11 𝑥 ∈ V
21 breq2 5074 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑦 <s 𝑧𝑦 <s 𝑥))
2220, 21ralsn 4614 . . . . . . . . . 10 (∀𝑧 ∈ {𝑥}𝑦 <s 𝑧𝑦 <s 𝑥)
2322ralbii 3090 . . . . . . . . 9 (∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ ∀𝑦𝐴 𝑦 <s 𝑥)
2419, 23sylibr 233 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)
2516, 18, 243jca 1126 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → (𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
26 brsslt 33907 . . . . . . 7 (𝐴 <<s {𝑥} ↔ ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)))
2715, 25, 26sylanbrc 582 . . . . . 6 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 <<s {𝑥})
285ad2antrr 722 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐵 ∈ V)
2928, 14jctil 519 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ({𝑥} ∈ V ∧ 𝐵 ∈ V))
304ad2antrr 722 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐵 No )
31 simprr2 1220 . . . . . . . . 9 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ∀𝑧𝐵 𝑥 <s 𝑧)
32 breq1 5073 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦 <s 𝑧𝑥 <s 𝑧))
3332ralbidv 3120 . . . . . . . . . 10 (𝑦 = 𝑥 → (∀𝑧𝐵 𝑦 <s 𝑧 ↔ ∀𝑧𝐵 𝑥 <s 𝑧))
3420, 33ralsn 4614 . . . . . . . . 9 (∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧 ↔ ∀𝑧𝐵 𝑥 <s 𝑧)
3531, 34sylibr 233 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)
3618, 30, 353jca 1126 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
37 brsslt 33907 . . . . . . 7 ({𝑥} <<s 𝐵 ↔ (({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)))
3829, 36, 37sylanbrc 582 . . . . . 6 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → {𝑥} <<s 𝐵)
39 simprr3 1221 . . . . . 6 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday 𝑥) ⊆ 𝑂)
4027, 38, 393jca 1126 . . . . 5 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))
4140expr 456 . . . 4 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ 𝑥 No ) → ((∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂)))
4241reximdva 3202 . . 3 ((𝐴 <<s 𝐵𝑂 ∈ On) → (∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂)))
43423adant3 1130 . 2 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → (∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂)))
4412, 43mpd 15 1 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cun 3881  wss 3883  {csn 4558   class class class wbr 5070  cima 5583  Oncon0 6251  cfv 6418   No csur 33770   <s cslt 33771   bday cbday 33772   <<s csslt 33902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903
This theorem is referenced by:  etasslt2  33935  scutbdaybnd  33936
  Copyright terms: Public domain W3C validator