Step | Hyp | Ref
| Expression |
1 | | ssltss1 33983 |
. . . . . 6
⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No
) |
2 | | ssltex1 33981 |
. . . . . 6
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
3 | 1, 2 | jca 512 |
. . . . 5
⊢ (𝐴 <<s 𝐵 → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
4 | | ssltss2 33984 |
. . . . . 6
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No
) |
5 | | ssltex2 33982 |
. . . . . 6
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) |
6 | 4, 5 | jca 512 |
. . . . 5
⊢ (𝐴 <<s 𝐵 → (𝐵 ⊆ No
∧ 𝐵 ∈
V)) |
7 | | ssltsep 33985 |
. . . . 5
⊢ (𝐴 <<s 𝐵 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝑦 <s 𝑧) |
8 | 3, 6, 7 | 3jca 1127 |
. . . 4
⊢ (𝐴 <<s 𝐵 → ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) |
9 | 8 | 3ad2ant1 1132 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂) → ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) |
10 | | 3simpc 1149 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂) → (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) |
11 | | noeta 33946 |
. . 3
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝑦 <s 𝑧) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ∃𝑥 ∈
No (∀𝑦
∈ 𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂)) |
12 | 9, 10, 11 | syl2anc 584 |
. 2
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂) → ∃𝑥 ∈
No (∀𝑦
∈ 𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂)) |
13 | 2 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → 𝐴 ∈ V) |
14 | | snex 5354 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
15 | 13, 14 | jctir 521 |
. . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → (𝐴 ∈ V ∧ {𝑥} ∈ V)) |
16 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → 𝐴 ⊆
No ) |
17 | | snssi 4741 |
. . . . . . . . 9
⊢ (𝑥 ∈
No → {𝑥}
⊆ No ) |
18 | 17 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → {𝑥} ⊆
No ) |
19 | | simprr1 1220 |
. . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥) |
20 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
21 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝑦 <s 𝑧 ↔ 𝑦 <s 𝑥)) |
22 | 20, 21 | ralsn 4617 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
{𝑥}𝑦 <s 𝑧 ↔ 𝑦 <s 𝑥) |
23 | 22 | ralbii 3092 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥) |
24 | 19, 23 | sylibr 233 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧) |
25 | 16, 18, 24 | 3jca 1127 |
. . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → (𝐴 ⊆
No ∧ {𝑥}
⊆ No ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧)) |
26 | | brsslt 33980 |
. . . . . . 7
⊢ (𝐴 <<s {𝑥} ↔ ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 ⊆ No
∧ {𝑥} ⊆ No ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧))) |
27 | 15, 25, 26 | sylanbrc 583 |
. . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → 𝐴 <<s {𝑥}) |
28 | 5 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → 𝐵 ∈ V) |
29 | 28, 14 | jctil 520 |
. . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → ({𝑥} ∈ V ∧ 𝐵 ∈ V)) |
30 | 4 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → 𝐵 ⊆
No ) |
31 | | simprr2 1221 |
. . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧) |
32 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦 <s 𝑧 ↔ 𝑥 <s 𝑧)) |
33 | 32 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝐵 𝑦 <s 𝑧 ↔ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧)) |
34 | 20, 33 | ralsn 4617 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
{𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧 ↔ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧) |
35 | 31, 34 | sylibr 233 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧) |
36 | 18, 30, 35 | 3jca 1127 |
. . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → ({𝑥} ⊆
No ∧ 𝐵 ⊆
No ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) |
37 | | brsslt 33980 |
. . . . . . 7
⊢ ({𝑥} <<s 𝐵 ↔ (({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No
∧ 𝐵 ⊆ No ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧))) |
38 | 29, 36, 37 | sylanbrc 583 |
. . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → {𝑥} <<s 𝐵) |
39 | | simprr3 1222 |
. . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → ( bday ‘𝑥) ⊆ 𝑂) |
40 | 27, 38, 39 | 3jca 1127 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ (𝑥 ∈ No
∧ (∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂))) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday
‘𝑥) ⊆
𝑂)) |
41 | 40 | expr 457 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) ∧ 𝑥 ∈ No )
→ ((∀𝑦 ∈
𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday
‘𝑥) ⊆
𝑂))) |
42 | 41 | reximdva 3203 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On) → (∃𝑥 ∈
No (∀𝑦
∈ 𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂) → ∃𝑥 ∈
No (𝐴 <<s
{𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday
‘𝑥) ⊆
𝑂))) |
43 | 42 | 3adant3 1131 |
. 2
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂) → (∃𝑥 ∈
No (∀𝑦
∈ 𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
𝑂) → ∃𝑥 ∈
No (𝐴 <<s
{𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday
‘𝑥) ⊆
𝑂))) |
44 | 12, 43 | mpd 15 |
1
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂) → ∃𝑥 ∈
No (𝐴 <<s
{𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday
‘𝑥) ⊆
𝑂)) |