Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etasslt Structured version   Visualization version   GIF version

Theorem etasslt 33382
Description: A restatement of noeta 33330 using set less than. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
etasslt (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem etasslt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltss1 33365 . . 3 (𝐴 <<s 𝐵𝐴 No )
2 ssltex1 33363 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
3 ssltss2 33366 . . 3 (𝐴 <<s 𝐵𝐵 No )
4 ssltex2 33364 . . 3 (𝐴 <<s 𝐵𝐵 ∈ V)
5 ssltsep 33367 . . 3 (𝐴 <<s 𝐵 → ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧)
6 noeta 33330 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧) → ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
71, 2, 3, 4, 5, 6syl221anc 1378 . 2 (𝐴 <<s 𝐵 → ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
8 brsslt 33362 . . . . . 6 (𝐴 <<s {𝑥} ↔ ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)))
9 df-3an 1086 . . . . . . 7 ((𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ((𝐴 No ∧ {𝑥} ⊆ No ) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
109bianass 641 . . . . . 6 (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)) ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
118, 10bitri 278 . . . . 5 (𝐴 <<s {𝑥} ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
122adantr 484 . . . . . . . . . 10 ((𝐴 <<s 𝐵𝑥 No ) → 𝐴 ∈ V)
13 snex 5300 . . . . . . . . . 10 {𝑥} ∈ V
1412, 13jctir 524 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → (𝐴 ∈ V ∧ {𝑥} ∈ V))
151adantr 484 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → 𝐴 No )
16 snssi 4704 . . . . . . . . . 10 (𝑥 No → {𝑥} ⊆ No )
1716adantl 485 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → {𝑥} ⊆ No )
1814, 15, 17jca32 519 . . . . . . . 8 ((𝐴 <<s 𝐵𝑥 No ) → ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )))
1918biantrurd 536 . . . . . . 7 ((𝐴 <<s 𝐵𝑥 No ) → (∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)))
2019bicomd 226 . . . . . 6 ((𝐴 <<s 𝐵𝑥 No ) → ((((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
21 vex 3447 . . . . . . . 8 𝑥 ∈ V
22 breq2 5037 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 <s 𝑧𝑦 <s 𝑥))
2321, 22ralsn 4582 . . . . . . 7 (∀𝑧 ∈ {𝑥}𝑦 <s 𝑧𝑦 <s 𝑥)
2423ralbii 3136 . . . . . 6 (∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ ∀𝑦𝐴 𝑦 <s 𝑥)
2520, 24syl6bb 290 . . . . 5 ((𝐴 <<s 𝐵𝑥 No ) → ((((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ∀𝑦𝐴 𝑦 <s 𝑥))
2611, 25syl5bb 286 . . . 4 ((𝐴 <<s 𝐵𝑥 No ) → (𝐴 <<s {𝑥} ↔ ∀𝑦𝐴 𝑦 <s 𝑥))
27 brsslt 33362 . . . . . . 7 ({𝑥} <<s 𝐵 ↔ (({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)))
28 df-3an 1086 . . . . . . . 8 (({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧) ↔ (({𝑥} ⊆ No 𝐵 No ) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
2928bianass 641 . . . . . . 7 ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)) ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
3027, 29bitri 278 . . . . . 6 ({𝑥} <<s 𝐵 ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
314adantr 484 . . . . . . . . . 10 ((𝐴 <<s 𝐵𝑥 No ) → 𝐵 ∈ V)
3231, 13jctil 523 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → ({𝑥} ∈ V ∧ 𝐵 ∈ V))
333adantr 484 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → 𝐵 No )
3432, 17, 33jca32 519 . . . . . . . 8 ((𝐴 <<s 𝐵𝑥 No ) → (({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )))
3534biantrurd 536 . . . . . . 7 ((𝐴 <<s 𝐵𝑥 No ) → (∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧 ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)))
3635bicomd 226 . . . . . 6 ((𝐴 <<s 𝐵𝑥 No ) → (((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧) ↔ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
3730, 36syl5bb 286 . . . . 5 ((𝐴 <<s 𝐵𝑥 No ) → ({𝑥} <<s 𝐵 ↔ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
38 breq1 5036 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 <s 𝑧𝑥 <s 𝑧))
3938ralbidv 3165 . . . . . 6 (𝑦 = 𝑥 → (∀𝑧𝐵 𝑦 <s 𝑧 ↔ ∀𝑧𝐵 𝑥 <s 𝑧))
4021, 39ralsn 4582 . . . . 5 (∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧 ↔ ∀𝑧𝐵 𝑥 <s 𝑧)
4137, 40syl6bb 290 . . . 4 ((𝐴 <<s 𝐵𝑥 No ) → ({𝑥} <<s 𝐵 ↔ ∀𝑧𝐵 𝑥 <s 𝑧))
4226, 413anbi12d 1434 . . 3 ((𝐴 <<s 𝐵𝑥 No ) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))) ↔ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵)))))
4342rexbidva 3258 . 2 (𝐴 <<s 𝐵 → (∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))) ↔ ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵)))))
447, 43mpbird 260 1 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wcel 2112  wral 3109  wrex 3110  Vcvv 3444  cun 3882  wss 3884  {csn 4528   cuni 4803   class class class wbr 5033  cima 5526  suc csuc 6165  cfv 6328   No csur 33255   <s cslt 33256   bday cbday 33257   <<s csslt 33358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-1o 8089  df-2o 8090  df-no 33258  df-slt 33259  df-bday 33260  df-sslt 33359
This theorem is referenced by:  scutbdaybnd  33383
  Copyright terms: Public domain W3C validator