Step | Hyp | Ref
| Expression |
1 | | ssltss1 32867 |
. . 3
⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No
) |
2 | | ssltex1 32865 |
. . 3
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
3 | | ssltss2 32868 |
. . 3
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No
) |
4 | | ssltex2 32866 |
. . 3
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) |
5 | | ssltsep 32869 |
. . 3
⊢ (𝐴 <<s 𝐵 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝑦 <s 𝑧) |
6 | | noeta 32832 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝑦 <s 𝑧) → ∃𝑥 ∈ No
(∀𝑦 ∈ 𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
suc ∪ ( bday “
(𝐴 ∪ 𝐵)))) |
7 | 1, 2, 3, 4, 5, 6 | syl221anc 1374 |
. 2
⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No
(∀𝑦 ∈ 𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
suc ∪ ( bday “
(𝐴 ∪ 𝐵)))) |
8 | | brsslt 32864 |
. . . . . 6
⊢ (𝐴 <<s {𝑥} ↔ ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 ⊆ No
∧ {𝑥} ⊆ No ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧))) |
9 | | df-3an 1082 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ {𝑥}
⊆ No ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ((𝐴 ⊆ No
∧ {𝑥} ⊆ No ) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧)) |
10 | 9 | bianass 638 |
. . . . . 6
⊢ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 ⊆
No ∧ {𝑥}
⊆ No ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧)) ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 ⊆ No
∧ {𝑥} ⊆ No )) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧)) |
11 | 8, 10 | bitri 276 |
. . . . 5
⊢ (𝐴 <<s {𝑥} ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 ⊆ No
∧ {𝑥} ⊆ No )) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧)) |
12 | 2 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ 𝐴 ∈
V) |
13 | | snex 5223 |
. . . . . . . . . 10
⊢ {𝑥} ∈ V |
14 | 12, 13 | jctir 521 |
. . . . . . . . 9
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ (𝐴 ∈ V ∧
{𝑥} ∈
V)) |
15 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ 𝐴 ⊆ No ) |
16 | | snssi 4648 |
. . . . . . . . . 10
⊢ (𝑥 ∈
No → {𝑥}
⊆ No ) |
17 | 16 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ {𝑥} ⊆ No ) |
18 | 14, 15, 17 | jca32 516 |
. . . . . . . 8
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ ((𝐴 ∈ V ∧
{𝑥} ∈ V) ∧ (𝐴 ⊆
No ∧ {𝑥}
⊆ No ))) |
19 | 18 | biantrurd 533 |
. . . . . . 7
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ (∀𝑦 ∈
𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 ⊆ No
∧ {𝑥} ⊆ No )) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧))) |
20 | 19 | bicomd 224 |
. . . . . 6
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ ((((𝐴 ∈ V ∧
{𝑥} ∈ V) ∧ (𝐴 ⊆
No ∧ {𝑥}
⊆ No )) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧)) |
21 | | vex 3440 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
22 | | breq2 4966 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑦 <s 𝑧 ↔ 𝑦 <s 𝑥)) |
23 | 21, 22 | ralsn 4526 |
. . . . . . 7
⊢
(∀𝑧 ∈
{𝑥}𝑦 <s 𝑧 ↔ 𝑦 <s 𝑥) |
24 | 23 | ralbii 3132 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥) |
25 | 20, 24 | syl6bb 288 |
. . . . 5
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ ((((𝐴 ∈ V ∧
{𝑥} ∈ V) ∧ (𝐴 ⊆
No ∧ {𝑥}
⊆ No )) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥)) |
26 | 11, 25 | syl5bb 284 |
. . . 4
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ (𝐴 <<s {𝑥} ↔ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥)) |
27 | | brsslt 32864 |
. . . . . . 7
⊢ ({𝑥} <<s 𝐵 ↔ (({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No
∧ 𝐵 ⊆ No ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧))) |
28 | | df-3an 1082 |
. . . . . . . 8
⊢ (({𝑥} ⊆
No ∧ 𝐵 ⊆
No ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧) ↔ (({𝑥} ⊆ No
∧ 𝐵 ⊆ No ) ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) |
29 | 28 | bianass 638 |
. . . . . . 7
⊢ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆
No ∧ 𝐵 ⊆
No ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No
∧ 𝐵 ⊆ No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) |
30 | 27, 29 | bitri 276 |
. . . . . 6
⊢ ({𝑥} <<s 𝐵 ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No
∧ 𝐵 ⊆ No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) |
31 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ 𝐵 ∈
V) |
32 | 31, 13 | jctil 520 |
. . . . . . . . 9
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ ({𝑥} ∈ V ∧
𝐵 ∈
V)) |
33 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ 𝐵 ⊆ No ) |
34 | 32, 17, 33 | jca32 516 |
. . . . . . . 8
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ (({𝑥} ∈ V ∧
𝐵 ∈ V) ∧ ({𝑥} ⊆
No ∧ 𝐵 ⊆
No ))) |
35 | 34 | biantrurd 533 |
. . . . . . 7
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ (∀𝑦 ∈
{𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧 ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No
∧ 𝐵 ⊆ No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧))) |
36 | 35 | bicomd 224 |
. . . . . 6
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ (((({𝑥} ∈ V
∧ 𝐵 ∈ V) ∧
({𝑥} ⊆ No ∧ 𝐵 ⊆ No ))
∧ ∀𝑦 ∈
{𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧) ↔ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) |
37 | 30, 36 | syl5bb 284 |
. . . . 5
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ ({𝑥} <<s 𝐵 ↔ ∀𝑦 ∈ {𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧)) |
38 | | breq1 4965 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 <s 𝑧 ↔ 𝑥 <s 𝑧)) |
39 | 38 | ralbidv 3164 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝐵 𝑦 <s 𝑧 ↔ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧)) |
40 | 21, 39 | ralsn 4526 |
. . . . 5
⊢
(∀𝑦 ∈
{𝑥}∀𝑧 ∈ 𝐵 𝑦 <s 𝑧 ↔ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧) |
41 | 37, 40 | syl6bb 288 |
. . . 4
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ ({𝑥} <<s 𝐵 ↔ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧)) |
42 | 26, 41 | 3anbi12d 1429 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ No )
→ ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday
‘𝑥) ⊆
suc ∪ ( bday “
(𝐴 ∪ 𝐵))) ↔ (∀𝑦 ∈ 𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
suc ∪ ( bday “
(𝐴 ∪ 𝐵))))) |
43 | 42 | rexbidva 3259 |
. 2
⊢ (𝐴 <<s 𝐵 → (∃𝑥 ∈ No
(𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday
‘𝑥) ⊆
suc ∪ ( bday “
(𝐴 ∪ 𝐵))) ↔ ∃𝑥 ∈ No
(∀𝑦 ∈ 𝐴 𝑦 <s 𝑥 ∧ ∀𝑧 ∈ 𝐵 𝑥 <s 𝑧 ∧ ( bday
‘𝑥) ⊆
suc ∪ ( bday “
(𝐴 ∪ 𝐵))))) |
44 | 7, 43 | mpbird 258 |
1
⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No
(𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday
‘𝑥) ⊆
suc ∪ ( bday “
(𝐴 ∪ 𝐵)))) |