MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  etasslt Structured version   Visualization version   GIF version

Theorem etasslt 27314
Description: A restatement of noeta 27246 using set less-than. (Contributed by Scott Fenton, 10-Aug-2024.)
Assertion
Ref Expression
etasslt ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑂

Proof of Theorem etasslt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltss1 27290 . . . . . 6 (𝐴 <<s 𝐵𝐴 No )
2 ssltex1 27288 . . . . . 6 (𝐴 <<s 𝐵𝐴 ∈ V)
31, 2jca 513 . . . . 5 (𝐴 <<s 𝐵 → (𝐴 No 𝐴 ∈ V))
4 ssltss2 27291 . . . . . 6 (𝐴 <<s 𝐵𝐵 No )
5 ssltex2 27289 . . . . . 6 (𝐴 <<s 𝐵𝐵 ∈ V)
64, 5jca 513 . . . . 5 (𝐴 <<s 𝐵 → (𝐵 No 𝐵 ∈ V))
7 ssltsep 27292 . . . . 5 (𝐴 <<s 𝐵 → ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧)
83, 6, 73jca 1129 . . . 4 (𝐴 <<s 𝐵 → ((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧))
983ad2ant1 1134 . . 3 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧))
10 3simpc 1151 . . 3 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂))
11 noeta 27246 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))
129, 10, 11syl2anc 585 . 2 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))
132ad2antrr 725 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 ∈ V)
14 vsnex 5430 . . . . . . . 8 {𝑥} ∈ V
1513, 14jctir 522 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → (𝐴 ∈ V ∧ {𝑥} ∈ V))
161ad2antrr 725 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 No )
17 snssi 4812 . . . . . . . . 9 (𝑥 No → {𝑥} ⊆ No )
1817ad2antrl 727 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → {𝑥} ⊆ No )
19 simprr1 1222 . . . . . . . . 9 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ∀𝑦𝐴 𝑦 <s 𝑥)
20 vex 3479 . . . . . . . . . . 11 𝑥 ∈ V
21 breq2 5153 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑦 <s 𝑧𝑦 <s 𝑥))
2220, 21ralsn 4686 . . . . . . . . . 10 (∀𝑧 ∈ {𝑥}𝑦 <s 𝑧𝑦 <s 𝑥)
2322ralbii 3094 . . . . . . . . 9 (∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ ∀𝑦𝐴 𝑦 <s 𝑥)
2419, 23sylibr 233 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)
2516, 18, 243jca 1129 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → (𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
26 brsslt 27287 . . . . . . 7 (𝐴 <<s {𝑥} ↔ ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)))
2715, 25, 26sylanbrc 584 . . . . . 6 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 <<s {𝑥})
285ad2antrr 725 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐵 ∈ V)
2928, 14jctil 521 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ({𝑥} ∈ V ∧ 𝐵 ∈ V))
304ad2antrr 725 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐵 No )
31 simprr2 1223 . . . . . . . . 9 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ∀𝑧𝐵 𝑥 <s 𝑧)
32 breq1 5152 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦 <s 𝑧𝑥 <s 𝑧))
3332ralbidv 3178 . . . . . . . . . 10 (𝑦 = 𝑥 → (∀𝑧𝐵 𝑦 <s 𝑧 ↔ ∀𝑧𝐵 𝑥 <s 𝑧))
3420, 33ralsn 4686 . . . . . . . . 9 (∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧 ↔ ∀𝑧𝐵 𝑥 <s 𝑧)
3531, 34sylibr 233 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)
3618, 30, 353jca 1129 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
37 brsslt 27287 . . . . . . 7 ({𝑥} <<s 𝐵 ↔ (({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)))
3829, 36, 37sylanbrc 584 . . . . . 6 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → {𝑥} <<s 𝐵)
39 simprr3 1224 . . . . . 6 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday 𝑥) ⊆ 𝑂)
4027, 38, 393jca 1129 . . . . 5 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ (𝑥 No ∧ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂))) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))
4140expr 458 . . . 4 (((𝐴 <<s 𝐵𝑂 ∈ On) ∧ 𝑥 No ) → ((∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂)))
4241reximdva 3169 . . 3 ((𝐴 <<s 𝐵𝑂 ∈ On) → (∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂)))
43423adant3 1133 . 2 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → (∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂)))
4412, 43mpd 15 1 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  cun 3947  wss 3949  {csn 4629   class class class wbr 5149  cima 5680  Oncon0 6365  cfv 6544   No csur 27143   <s cslt 27144   bday cbday 27145   <<s csslt 27282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148  df-sslt 27283
This theorem is referenced by:  etasslt2  27315  scutbdaybnd  27316
  Copyright terms: Public domain W3C validator