Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etasslt Structured version   Visualization version   GIF version

Theorem etasslt 32884
Description: A restatement of noeta 32832 using set less than. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
etasslt (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem etasslt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltss1 32867 . . 3 (𝐴 <<s 𝐵𝐴 No )
2 ssltex1 32865 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
3 ssltss2 32868 . . 3 (𝐴 <<s 𝐵𝐵 No )
4 ssltex2 32866 . . 3 (𝐴 <<s 𝐵𝐵 ∈ V)
5 ssltsep 32869 . . 3 (𝐴 <<s 𝐵 → ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧)
6 noeta 32832 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑦𝐴𝑧𝐵 𝑦 <s 𝑧) → ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
71, 2, 3, 4, 5, 6syl221anc 1374 . 2 (𝐴 <<s 𝐵 → ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
8 brsslt 32864 . . . . . 6 (𝐴 <<s {𝑥} ↔ ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)))
9 df-3an 1082 . . . . . . 7 ((𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ((𝐴 No ∧ {𝑥} ⊆ No ) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
109bianass 638 . . . . . 6 (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)) ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
118, 10bitri 276 . . . . 5 (𝐴 <<s {𝑥} ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
122adantr 481 . . . . . . . . . 10 ((𝐴 <<s 𝐵𝑥 No ) → 𝐴 ∈ V)
13 snex 5223 . . . . . . . . . 10 {𝑥} ∈ V
1412, 13jctir 521 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → (𝐴 ∈ V ∧ {𝑥} ∈ V))
151adantr 481 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → 𝐴 No )
16 snssi 4648 . . . . . . . . . 10 (𝑥 No → {𝑥} ⊆ No )
1716adantl 482 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → {𝑥} ⊆ No )
1814, 15, 17jca32 516 . . . . . . . 8 ((𝐴 <<s 𝐵𝑥 No ) → ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )))
1918biantrurd 533 . . . . . . 7 ((𝐴 <<s 𝐵𝑥 No ) → (∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ (((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧)))
2019bicomd 224 . . . . . 6 ((𝐴 <<s 𝐵𝑥 No ) → ((((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧))
21 vex 3440 . . . . . . . 8 𝑥 ∈ V
22 breq2 4966 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 <s 𝑧𝑦 <s 𝑥))
2321, 22ralsn 4526 . . . . . . 7 (∀𝑧 ∈ {𝑥}𝑦 <s 𝑧𝑦 <s 𝑥)
2423ralbii 3132 . . . . . 6 (∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧 ↔ ∀𝑦𝐴 𝑦 <s 𝑥)
2520, 24syl6bb 288 . . . . 5 ((𝐴 <<s 𝐵𝑥 No ) → ((((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 No ∧ {𝑥} ⊆ No )) ∧ ∀𝑦𝐴𝑧 ∈ {𝑥}𝑦 <s 𝑧) ↔ ∀𝑦𝐴 𝑦 <s 𝑥))
2611, 25syl5bb 284 . . . 4 ((𝐴 <<s 𝐵𝑥 No ) → (𝐴 <<s {𝑥} ↔ ∀𝑦𝐴 𝑦 <s 𝑥))
27 brsslt 32864 . . . . . . 7 ({𝑥} <<s 𝐵 ↔ (({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)))
28 df-3an 1082 . . . . . . . 8 (({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧) ↔ (({𝑥} ⊆ No 𝐵 No ) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
2928bianass 638 . . . . . . 7 ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)) ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
3027, 29bitri 276 . . . . . 6 ({𝑥} <<s 𝐵 ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
314adantr 481 . . . . . . . . . 10 ((𝐴 <<s 𝐵𝑥 No ) → 𝐵 ∈ V)
3231, 13jctil 520 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → ({𝑥} ∈ V ∧ 𝐵 ∈ V))
333adantr 481 . . . . . . . . 9 ((𝐴 <<s 𝐵𝑥 No ) → 𝐵 No )
3432, 17, 33jca32 516 . . . . . . . 8 ((𝐴 <<s 𝐵𝑥 No ) → (({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )))
3534biantrurd 533 . . . . . . 7 ((𝐴 <<s 𝐵𝑥 No ) → (∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧 ↔ ((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧)))
3635bicomd 224 . . . . . 6 ((𝐴 <<s 𝐵𝑥 No ) → (((({𝑥} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑥} ⊆ No 𝐵 No )) ∧ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧) ↔ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
3730, 36syl5bb 284 . . . . 5 ((𝐴 <<s 𝐵𝑥 No ) → ({𝑥} <<s 𝐵 ↔ ∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧))
38 breq1 4965 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 <s 𝑧𝑥 <s 𝑧))
3938ralbidv 3164 . . . . . 6 (𝑦 = 𝑥 → (∀𝑧𝐵 𝑦 <s 𝑧 ↔ ∀𝑧𝐵 𝑥 <s 𝑧))
4021, 39ralsn 4526 . . . . 5 (∀𝑦 ∈ {𝑥}∀𝑧𝐵 𝑦 <s 𝑧 ↔ ∀𝑧𝐵 𝑥 <s 𝑧)
4137, 40syl6bb 288 . . . 4 ((𝐴 <<s 𝐵𝑥 No ) → ({𝑥} <<s 𝐵 ↔ ∀𝑧𝐵 𝑥 <s 𝑧))
4226, 413anbi12d 1429 . . 3 ((𝐴 <<s 𝐵𝑥 No ) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))) ↔ (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵)))))
4342rexbidva 3259 . 2 (𝐴 <<s 𝐵 → (∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))) ↔ ∃𝑥 No (∀𝑦𝐴 𝑦 <s 𝑥 ∧ ∀𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵)))))
447, 43mpbird 258 1 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080  wcel 2081  wral 3105  wrex 3106  Vcvv 3437  cun 3857  wss 3859  {csn 4472   cuni 4745   class class class wbr 4962  cima 5446  suc csuc 6068  cfv 6225   No csur 32757   <s cslt 32758   bday cbday 32759   <<s csslt 32860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-1o 7953  df-2o 7954  df-no 32760  df-slt 32761  df-bday 32762  df-sslt 32861
This theorem is referenced by:  scutbdaybnd  32885
  Copyright terms: Public domain W3C validator