MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssct Structured version   Visualization version   GIF version

Theorem ssct 8826
Description: Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
ssct ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)

Proof of Theorem ssct
StepHypRef Expression
1 ctex 8740 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
2 ssdomg 8773 . . . 4 (𝐵 ∈ V → (𝐴𝐵𝐴𝐵))
31, 2syl 17 . . 3 (𝐵 ≼ ω → (𝐴𝐵𝐴𝐵))
43impcom 408 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴𝐵)
5 domtr 8780 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
64, 5sylancom 588 1 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3429  wss 3886   class class class wbr 5073  ωcom 7702  cdom 8718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-dom 8722
This theorem is referenced by:  measvuni  32190  measiuns  32193  sxbrsigalem1  32260  ssnct  42608  fzct  42899  fzoct  42904  salexct  43854  opnvonmbllem2  44152
  Copyright terms: Public domain W3C validator