![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssct | Structured version Visualization version GIF version |
Description: Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017.) Avoid ax-pow 5354, ax-un 7719. (Revised by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
ssct | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domssl 8991 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3941 class class class wbr 5139 ωcom 7849 ≼ cdom 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-dom 8938 |
This theorem is referenced by: measvuni 33704 measiuns 33707 sxbrsigalem1 33776 ssnct 44279 fzct 44599 fzoct 44604 salexct 45560 opnvonmbllem2 45859 |
Copyright terms: Public domain | W3C validator |