Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssct | Structured version Visualization version GIF version |
Description: Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ssct | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 8740 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
2 | ssdomg 8773 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐵 ≼ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
4 | 3 | impcom 408 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ 𝐵) |
5 | domtr 8780 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
6 | 4, 5 | sylancom 588 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3429 ⊆ wss 3886 class class class wbr 5073 ωcom 7702 ≼ cdom 8718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-dom 8722 |
This theorem is referenced by: measvuni 32190 measiuns 32193 sxbrsigalem1 32260 ssnct 42608 fzct 42899 fzoct 42904 salexct 43854 opnvonmbllem2 44152 |
Copyright terms: Public domain | W3C validator |