| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssct | Structured version Visualization version GIF version | ||
| Description: Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017.) Avoid ax-pow 5298, ax-un 7663. (Revised by BTernaryTau, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| ssct | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domssl 8915 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3897 class class class wbr 5086 ωcom 7791 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-dom 8866 |
| This theorem is referenced by: measvuni 34219 measiuns 34222 sxbrsigalem1 34290 ssnct 45114 fzct 45417 fzoct 45422 salexct 46372 opnvonmbllem2 46671 |
| Copyright terms: Public domain | W3C validator |