Proof of Theorem stoweidlem8
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp3 1138 | . 2
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → 𝐺 ∈ 𝐴) | 
| 2 |  | eleq1 2828 | . . . . 5
⊢ (𝑔 = 𝐺 → (𝑔 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴)) | 
| 3 | 2 | 3anbi3d 1443 | . . . 4
⊢ (𝑔 = 𝐺 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴))) | 
| 4 |  | stoweidlem8.3 | . . . . . . 7
⊢
Ⅎ𝑡𝐺 | 
| 5 | 4 | nfeq2 2922 | . . . . . 6
⊢
Ⅎ𝑡 𝑔 = 𝐺 | 
| 6 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑔‘𝑡) = (𝐺‘𝑡)) | 
| 7 | 6 | oveq2d 7448 | . . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝐹‘𝑡) + (𝑔‘𝑡)) = ((𝐹‘𝑡) + (𝐺‘𝑡))) | 
| 8 | 7 | adantr 480 | . . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝑔‘𝑡)) = ((𝐹‘𝑡) + (𝐺‘𝑡))) | 
| 9 | 5, 8 | mpteq2da 5239 | . . . . 5
⊢ (𝑔 = 𝐺 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡)))) | 
| 10 | 9 | eleq1d 2825 | . . . 4
⊢ (𝑔 = 𝐺 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴)) | 
| 11 | 3, 10 | imbi12d 344 | . . 3
⊢ (𝑔 = 𝐺 → (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴))) | 
| 12 |  | simp2 1137 | . . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → 𝐹 ∈ 𝐴) | 
| 13 |  | eleq1 2828 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴)) | 
| 14 | 13 | 3anbi2d 1442 | . . . . . 6
⊢ (𝑓 = 𝐹 → ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴))) | 
| 15 |  | stoweidlem8.2 | . . . . . . . . 9
⊢
Ⅎ𝑡𝐹 | 
| 16 | 15 | nfeq2 2922 | . . . . . . . 8
⊢
Ⅎ𝑡 𝑓 = 𝐹 | 
| 17 |  | fveq1 6904 | . . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑡) = (𝐹‘𝑡)) | 
| 18 | 17 | oveq1d 7447 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑡) + (𝑔‘𝑡)) = ((𝐹‘𝑡) + (𝑔‘𝑡))) | 
| 19 | 18 | adantr 480 | . . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑡 ∈ 𝑇) → ((𝑓‘𝑡) + (𝑔‘𝑡)) = ((𝐹‘𝑡) + (𝑔‘𝑡))) | 
| 20 | 16, 19 | mpteq2da 5239 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡)))) | 
| 21 | 20 | eleq1d 2825 | . . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) | 
| 22 | 14, 21 | imbi12d 344 | . . . . 5
⊢ (𝑓 = 𝐹 → (((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴))) | 
| 23 |  | stoweidlem8.1 | . . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | 
| 24 | 22, 23 | vtoclg 3553 | . . . 4
⊢ (𝐹 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) | 
| 25 | 12, 24 | mpcom 38 | . . 3
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | 
| 26 | 11, 25 | vtoclg 3553 | . 2
⊢ (𝐺 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴)) | 
| 27 | 1, 26 | mpcom 38 | 1
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴) |