Proof of Theorem stoweidlem8
Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → 𝐺 ∈ 𝐴) |
2 | | eleq1 2826 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑔 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴)) |
3 | 2 | 3anbi3d 1441 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴))) |
4 | | stoweidlem8.3 |
. . . . . . 7
⊢
Ⅎ𝑡𝐺 |
5 | 4 | nfeq2 2924 |
. . . . . 6
⊢
Ⅎ𝑡 𝑔 = 𝐺 |
6 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑔‘𝑡) = (𝐺‘𝑡)) |
7 | 6 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝐹‘𝑡) + (𝑔‘𝑡)) = ((𝐹‘𝑡) + (𝐺‘𝑡))) |
8 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝑔‘𝑡)) = ((𝐹‘𝑡) + (𝐺‘𝑡))) |
9 | 5, 8 | mpteq2da 5172 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡)))) |
10 | 9 | eleq1d 2823 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴)) |
11 | 3, 10 | imbi12d 345 |
. . 3
⊢ (𝑔 = 𝐺 → (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴))) |
12 | | simp2 1136 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → 𝐹 ∈ 𝐴) |
13 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴)) |
14 | 13 | 3anbi2d 1440 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴))) |
15 | | stoweidlem8.2 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝐹 |
16 | 15 | nfeq2 2924 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑓 = 𝐹 |
17 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑡) = (𝐹‘𝑡)) |
18 | 17 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑡) + (𝑔‘𝑡)) = ((𝐹‘𝑡) + (𝑔‘𝑡))) |
19 | 18 | adantr 481 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑡 ∈ 𝑇) → ((𝑓‘𝑡) + (𝑔‘𝑡)) = ((𝐹‘𝑡) + (𝑔‘𝑡))) |
20 | 16, 19 | mpteq2da 5172 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡)))) |
21 | 20 | eleq1d 2823 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) |
22 | 14, 21 | imbi12d 345 |
. . . . 5
⊢ (𝑓 = 𝐹 → (((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴))) |
23 | | stoweidlem8.1 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
24 | 22, 23 | vtoclg 3505 |
. . . 4
⊢ (𝐹 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) |
25 | 12, 24 | mpcom 38 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
26 | 11, 25 | vtoclg 3505 |
. 2
⊢ (𝐺 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴)) |
27 | 1, 26 | mpcom 38 |
1
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴) |