Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem9 Structured version   Visualization version   GIF version

Theorem stoweidlem9 45426
Description: Lemma for stoweid 45480: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem9.1 (𝜑𝑇 = ∅)
stoweidlem9.2 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem9 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝐴,𝑔   𝑔,𝐸   𝑔,𝐹   𝑡,𝑔,𝑇
Allowed substitution hints:   𝜑(𝑡,𝑔)   𝐴(𝑡)   𝐸(𝑡)   𝐹(𝑡)

Proof of Theorem stoweidlem9
StepHypRef Expression
1 stoweidlem9.1 . . . 4 (𝜑𝑇 = ∅)
2 mpteq1 5245 . . . . 5 (𝑇 = ∅ → (𝑡𝑇 ↦ 1) = (𝑡 ∈ ∅ ↦ 1))
3 mpt0 6702 . . . . 5 (𝑡 ∈ ∅ ↦ 1) = ∅
42, 3eqtrdi 2784 . . . 4 (𝑇 = ∅ → (𝑡𝑇 ↦ 1) = ∅)
51, 4syl 17 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) = ∅)
6 stoweidlem9.2 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
75, 6eqeltrrd 2830 . 2 (𝜑 → ∅ ∈ 𝐴)
8 rzal 4512 . . 3 (𝑇 = ∅ → ∀𝑡𝑇 (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸)
91, 8syl 17 . 2 (𝜑 → ∀𝑡𝑇 (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸)
10 fveq1 6901 . . . . . 6 (𝑔 = ∅ → (𝑔𝑡) = (∅‘𝑡))
1110fvoveq1d 7448 . . . . 5 (𝑔 = ∅ → (abs‘((𝑔𝑡) − (𝐹𝑡))) = (abs‘((∅‘𝑡) − (𝐹𝑡))))
1211breq1d 5162 . . . 4 (𝑔 = ∅ → ((abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸 ↔ (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸))
1312ralbidv 3175 . . 3 (𝑔 = ∅ → (∀𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸 ↔ ∀𝑡𝑇 (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸))
1413rspcev 3611 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑡𝑇 (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸) → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸)
157, 9, 14syl2anc 582 1 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3058  wrex 3067  c0 4326   class class class wbr 5152  cmpt 5235  cfv 6553  (class class class)co 7426  1c1 11147   < clt 11286  cmin 11482  abscabs 15221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561  df-ov 7429
This theorem is referenced by:  stoweid  45480
  Copyright terms: Public domain W3C validator