![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem9 | Structured version Visualization version GIF version |
Description: Lemma for stoweid 45480: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem9.1 | ⊢ (𝜑 → 𝑇 = ∅) |
stoweidlem9.2 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
Ref | Expression |
---|---|
stoweidlem9 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem9.1 | . . . 4 ⊢ (𝜑 → 𝑇 = ∅) | |
2 | mpteq1 5245 | . . . . 5 ⊢ (𝑇 = ∅ → (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ ∅ ↦ 1)) | |
3 | mpt0 6702 | . . . . 5 ⊢ (𝑡 ∈ ∅ ↦ 1) = ∅ | |
4 | 2, 3 | eqtrdi 2784 | . . . 4 ⊢ (𝑇 = ∅ → (𝑡 ∈ 𝑇 ↦ 1) = ∅) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) = ∅) |
6 | stoweidlem9.2 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) | |
7 | 5, 6 | eqeltrrd 2830 | . 2 ⊢ (𝜑 → ∅ ∈ 𝐴) |
8 | rzal 4512 | . . 3 ⊢ (𝑇 = ∅ → ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) | |
9 | 1, 8 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
10 | fveq1 6901 | . . . . . 6 ⊢ (𝑔 = ∅ → (𝑔‘𝑡) = (∅‘𝑡)) | |
11 | 10 | fvoveq1d 7448 | . . . . 5 ⊢ (𝑔 = ∅ → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) = (abs‘((∅‘𝑡) − (𝐹‘𝑡)))) |
12 | 11 | breq1d 5162 | . . . 4 ⊢ (𝑔 = ∅ → ((abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸 ↔ (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸)) |
13 | 12 | ralbidv 3175 | . . 3 ⊢ (𝑔 = ∅ → (∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸 ↔ ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸)) |
14 | 13 | rspcev 3611 | . 2 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
15 | 7, 9, 14 | syl2anc 582 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 ∅c0 4326 class class class wbr 5152 ↦ cmpt 5235 ‘cfv 6553 (class class class)co 7426 1c1 11147 < clt 11286 − cmin 11482 abscabs 15221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 df-ov 7429 |
This theorem is referenced by: stoweid 45480 |
Copyright terms: Public domain | W3C validator |