| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for stoweid 46054: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem9.1 | ⊢ (𝜑 → 𝑇 = ∅) |
| stoweidlem9.2 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| stoweidlem9 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem9.1 | . . . 4 ⊢ (𝜑 → 𝑇 = ∅) | |
| 2 | mpteq1 5198 | . . . . 5 ⊢ (𝑇 = ∅ → (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ ∅ ↦ 1)) | |
| 3 | mpt0 6662 | . . . . 5 ⊢ (𝑡 ∈ ∅ ↦ 1) = ∅ | |
| 4 | 2, 3 | eqtrdi 2781 | . . . 4 ⊢ (𝑇 = ∅ → (𝑡 ∈ 𝑇 ↦ 1) = ∅) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) = ∅) |
| 6 | stoweidlem9.2 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) | |
| 7 | 5, 6 | eqeltrrd 2830 | . 2 ⊢ (𝜑 → ∅ ∈ 𝐴) |
| 8 | rzal 4474 | . . 3 ⊢ (𝑇 = ∅ → ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) | |
| 9 | 1, 8 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
| 10 | fveq1 6859 | . . . . . 6 ⊢ (𝑔 = ∅ → (𝑔‘𝑡) = (∅‘𝑡)) | |
| 11 | 10 | fvoveq1d 7411 | . . . . 5 ⊢ (𝑔 = ∅ → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) = (abs‘((∅‘𝑡) − (𝐹‘𝑡)))) |
| 12 | 11 | breq1d 5119 | . . . 4 ⊢ (𝑔 = ∅ → ((abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸 ↔ (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸)) |
| 13 | 12 | ralbidv 3157 | . . 3 ⊢ (𝑔 = ∅ → (∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸 ↔ ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸)) |
| 14 | 13 | rspcev 3591 | . 2 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
| 15 | 7, 9, 14 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∅c0 4298 class class class wbr 5109 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 1c1 11075 < clt 11214 − cmin 11411 abscabs 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fn 6516 df-fv 6521 df-ov 7392 |
| This theorem is referenced by: stoweid 46054 |
| Copyright terms: Public domain | W3C validator |