Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem9 Structured version   Visualization version   GIF version

Theorem stoweidlem9 46000
Description: Lemma for stoweid 46054: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem9.1 (𝜑𝑇 = ∅)
stoweidlem9.2 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem9 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝐴,𝑔   𝑔,𝐸   𝑔,𝐹   𝑡,𝑔,𝑇
Allowed substitution hints:   𝜑(𝑡,𝑔)   𝐴(𝑡)   𝐸(𝑡)   𝐹(𝑡)

Proof of Theorem stoweidlem9
StepHypRef Expression
1 stoweidlem9.1 . . . 4 (𝜑𝑇 = ∅)
2 mpteq1 5191 . . . . 5 (𝑇 = ∅ → (𝑡𝑇 ↦ 1) = (𝑡 ∈ ∅ ↦ 1))
3 mpt0 6642 . . . . 5 (𝑡 ∈ ∅ ↦ 1) = ∅
42, 3eqtrdi 2780 . . . 4 (𝑇 = ∅ → (𝑡𝑇 ↦ 1) = ∅)
51, 4syl 17 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) = ∅)
6 stoweidlem9.2 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
75, 6eqeltrrd 2829 . 2 (𝜑 → ∅ ∈ 𝐴)
8 rzal 4468 . . 3 (𝑇 = ∅ → ∀𝑡𝑇 (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸)
91, 8syl 17 . 2 (𝜑 → ∀𝑡𝑇 (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸)
10 fveq1 6839 . . . . . 6 (𝑔 = ∅ → (𝑔𝑡) = (∅‘𝑡))
1110fvoveq1d 7391 . . . . 5 (𝑔 = ∅ → (abs‘((𝑔𝑡) − (𝐹𝑡))) = (abs‘((∅‘𝑡) − (𝐹𝑡))))
1211breq1d 5112 . . . 4 (𝑔 = ∅ → ((abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸 ↔ (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸))
1312ralbidv 3156 . . 3 (𝑔 = ∅ → (∀𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸 ↔ ∀𝑡𝑇 (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸))
1413rspcev 3585 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑡𝑇 (abs‘((∅‘𝑡) − (𝐹𝑡))) < 𝐸) → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸)
157, 9, 14syl2anc 584 1 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  wrex 3053  c0 4292   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  1c1 11045   < clt 11184  cmin 11381  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372
This theorem is referenced by:  stoweid  46054
  Copyright terms: Public domain W3C validator