Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem9 | Structured version Visualization version GIF version |
Description: Lemma for stoweid 43604: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem9.1 | ⊢ (𝜑 → 𝑇 = ∅) |
stoweidlem9.2 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
Ref | Expression |
---|---|
stoweidlem9 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem9.1 | . . . 4 ⊢ (𝜑 → 𝑇 = ∅) | |
2 | mpteq1 5167 | . . . . 5 ⊢ (𝑇 = ∅ → (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ ∅ ↦ 1)) | |
3 | mpt0 6575 | . . . . 5 ⊢ (𝑡 ∈ ∅ ↦ 1) = ∅ | |
4 | 2, 3 | eqtrdi 2794 | . . . 4 ⊢ (𝑇 = ∅ → (𝑡 ∈ 𝑇 ↦ 1) = ∅) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) = ∅) |
6 | stoweidlem9.2 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) | |
7 | 5, 6 | eqeltrrd 2840 | . 2 ⊢ (𝜑 → ∅ ∈ 𝐴) |
8 | rzal 4439 | . . 3 ⊢ (𝑇 = ∅ → ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) | |
9 | 1, 8 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
10 | fveq1 6773 | . . . . . 6 ⊢ (𝑔 = ∅ → (𝑔‘𝑡) = (∅‘𝑡)) | |
11 | 10 | fvoveq1d 7297 | . . . . 5 ⊢ (𝑔 = ∅ → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) = (abs‘((∅‘𝑡) − (𝐹‘𝑡)))) |
12 | 11 | breq1d 5084 | . . . 4 ⊢ (𝑔 = ∅ → ((abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸 ↔ (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸)) |
13 | 12 | ralbidv 3112 | . . 3 ⊢ (𝑔 = ∅ → (∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸 ↔ ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸)) |
14 | 13 | rspcev 3561 | . 2 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((∅‘𝑡) − (𝐹‘𝑡))) < 𝐸) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
15 | 7, 9, 14 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 1c1 10872 < clt 11009 − cmin 11205 abscabs 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ov 7278 |
This theorem is referenced by: stoweid 43604 |
Copyright terms: Public domain | W3C validator |