Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem21 Structured version   Visualization version   GIF version

Theorem stoweidlem21 46012
Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem21.1 𝑡𝐺
stoweidlem21.2 𝑡𝐻
stoweidlem21.3 𝑡𝑆
stoweidlem21.4 𝑡𝜑
stoweidlem21.5 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
stoweidlem21.6 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem21.7 (𝜑𝑆 ∈ ℝ)
stoweidlem21.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem21.9 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem21.10 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
stoweidlem21.11 (𝜑𝐻𝐴)
stoweidlem21.12 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
Assertion
Ref Expression
stoweidlem21 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐸,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐻,𝑔   𝜑,𝑓,𝑔   𝑆,𝑔   𝑥,𝑡,𝑇   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑆(𝑡,𝑓)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡)

Proof of Theorem stoweidlem21
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem21.5 . . . 4 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
2 stoweidlem21.4 . . . . 5 𝑡𝜑
3 stoweidlem21.7 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
4 fvconst2g 7138 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
53, 4sylan 580 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
65eqcomd 2735 . . . . . 6 ((𝜑𝑡𝑇) → 𝑆 = ((𝑇 × {𝑆})‘𝑡))
76oveq2d 7365 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) = ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡)))
82, 7mpteq2da 5184 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆)) = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
91, 8eqtrid 2776 . . 3 (𝜑𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
10 stoweidlem21.11 . . . 4 (𝜑𝐻𝐴)
11 fconstmpt 5681 . . . . . 6 (𝑇 × {𝑆}) = (𝑠𝑇𝑆)
12 stoweidlem21.3 . . . . . . 7 𝑡𝑆
13 nfcv 2891 . . . . . . 7 𝑠𝑆
14 eqidd 2730 . . . . . . 7 (𝑠 = 𝑡𝑆 = 𝑆)
1512, 13, 14cbvmpt 5194 . . . . . 6 (𝑠𝑇𝑆) = (𝑡𝑇𝑆)
1611, 15eqtri 2752 . . . . 5 (𝑇 × {𝑆}) = (𝑡𝑇𝑆)
1712nfeq2 2909 . . . . . . . . . 10 𝑡 𝑥 = 𝑆
18 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑆𝑡𝑇) → 𝑥 = 𝑆)
1917, 18mpteq2da 5184 . . . . . . . . 9 (𝑥 = 𝑆 → (𝑡𝑇𝑥) = (𝑡𝑇𝑆))
2019eleq1d 2813 . . . . . . . 8 (𝑥 = 𝑆 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝑆) ∈ 𝐴))
2120imbi2d 340 . . . . . . 7 (𝑥 = 𝑆 → ((𝜑 → (𝑡𝑇𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)))
22 stoweidlem21.9 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322expcom 413 . . . . . . 7 (𝑥 ∈ ℝ → (𝜑 → (𝑡𝑇𝑥) ∈ 𝐴))
2421, 23vtoclga 3532 . . . . . 6 (𝑆 ∈ ℝ → (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴))
253, 24mpcom 38 . . . . 5 (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)
2616, 25eqeltrid 2832 . . . 4 (𝜑 → (𝑇 × {𝑆}) ∈ 𝐴)
27 stoweidlem21.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28 stoweidlem21.2 . . . . 5 𝑡𝐻
29 nfcv 2891 . . . . . 6 𝑡𝑇
3012nfsn 4659 . . . . . 6 𝑡{𝑆}
3129, 30nfxp 5652 . . . . 5 𝑡(𝑇 × {𝑆})
3227, 28, 31stoweidlem8 45999 . . . 4 ((𝜑𝐻𝐴 ∧ (𝑇 × {𝑆}) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
3310, 26, 32mpd3an23 1465 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
349, 33eqeltrd 2828 . 2 (𝜑𝐺𝐴)
35 simpr 484 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
36 stoweidlem21.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
37 feq1 6630 . . . . . . . . . . . . 13 (𝑓 = 𝐻 → (𝑓:𝑇⟶ℝ ↔ 𝐻:𝑇⟶ℝ))
3837rspccva 3576 . . . . . . . . . . . 12 ((∀𝑓𝐴 𝑓:𝑇⟶ℝ ∧ 𝐻𝐴) → 𝐻:𝑇⟶ℝ)
3936, 10, 38syl2anc 584 . . . . . . . . . . 11 (𝜑𝐻:𝑇⟶ℝ)
4039ffvelcdmda 7018 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
413adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑆 ∈ ℝ)
4240, 41readdcld 11144 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) ∈ ℝ)
431fvmpt2 6941 . . . . . . . . 9 ((𝑡𝑇 ∧ ((𝐻𝑡) + 𝑆) ∈ ℝ) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4435, 42, 43syl2anc 584 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4544oveq1d 7364 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
4640recnd 11143 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
47 stoweidlem21.6 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4847ffvelcdmda 7018 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4948recnd 11143 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
503recnd 11143 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
5150adantr 480 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑆 ∈ ℂ)
5246, 49, 51subsub3d 11505 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
5345, 52eqtr4d 2767 . . . . . 6 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)))
5453fveq2d 6826 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) = (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))))
55 stoweidlem21.12 . . . . . 6 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5655r19.21bi 3221 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5754, 56eqbrtrd 5114 . . . 4 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
5857ex 412 . . 3 (𝜑 → (𝑡𝑇 → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
592, 58ralrimi 3227 . 2 (𝜑 → ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
60 stoweidlem21.1 . . . . 5 𝑡𝐺
6160nfeq2 2909 . . . 4 𝑡 𝑓 = 𝐺
62 fveq1 6821 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝑡) = (𝐺𝑡))
6362oveq1d 7364 . . . . . 6 (𝑓 = 𝐺 → ((𝑓𝑡) − (𝐹𝑡)) = ((𝐺𝑡) − (𝐹𝑡)))
6463fveq2d 6826 . . . . 5 (𝑓 = 𝐺 → (abs‘((𝑓𝑡) − (𝐹𝑡))) = (abs‘((𝐺𝑡) − (𝐹𝑡))))
6564breq1d 5102 . . . 4 (𝑓 = 𝐺 → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6661, 65ralbid 3242 . . 3 (𝑓 = 𝐺 → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6766rspcev 3577 . 2 ((𝐺𝐴 ∧ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
6834, 59, 67syl2anc 584 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  wrex 3053  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008   + caddc 11012   < clt 11149  cmin 11347  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349
This theorem is referenced by:  stoweidlem62  46053
  Copyright terms: Public domain W3C validator