Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem21 Structured version   Visualization version   GIF version

Theorem stoweidlem21 46050
Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem21.1 𝑡𝐺
stoweidlem21.2 𝑡𝐻
stoweidlem21.3 𝑡𝑆
stoweidlem21.4 𝑡𝜑
stoweidlem21.5 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
stoweidlem21.6 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem21.7 (𝜑𝑆 ∈ ℝ)
stoweidlem21.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem21.9 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem21.10 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
stoweidlem21.11 (𝜑𝐻𝐴)
stoweidlem21.12 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
Assertion
Ref Expression
stoweidlem21 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐸,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐻,𝑔   𝜑,𝑓,𝑔   𝑆,𝑔   𝑥,𝑡,𝑇   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑆(𝑡,𝑓)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡)

Proof of Theorem stoweidlem21
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem21.5 . . . 4 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
2 stoweidlem21.4 . . . . 5 𝑡𝜑
3 stoweidlem21.7 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
4 fvconst2g 7194 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
53, 4sylan 580 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
65eqcomd 2741 . . . . . 6 ((𝜑𝑡𝑇) → 𝑆 = ((𝑇 × {𝑆})‘𝑡))
76oveq2d 7421 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) = ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡)))
82, 7mpteq2da 5213 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆)) = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
91, 8eqtrid 2782 . . 3 (𝜑𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
10 stoweidlem21.11 . . . 4 (𝜑𝐻𝐴)
11 fconstmpt 5716 . . . . . 6 (𝑇 × {𝑆}) = (𝑠𝑇𝑆)
12 stoweidlem21.3 . . . . . . 7 𝑡𝑆
13 nfcv 2898 . . . . . . 7 𝑠𝑆
14 eqidd 2736 . . . . . . 7 (𝑠 = 𝑡𝑆 = 𝑆)
1512, 13, 14cbvmpt 5223 . . . . . 6 (𝑠𝑇𝑆) = (𝑡𝑇𝑆)
1611, 15eqtri 2758 . . . . 5 (𝑇 × {𝑆}) = (𝑡𝑇𝑆)
1712nfeq2 2916 . . . . . . . . . 10 𝑡 𝑥 = 𝑆
18 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑆𝑡𝑇) → 𝑥 = 𝑆)
1917, 18mpteq2da 5213 . . . . . . . . 9 (𝑥 = 𝑆 → (𝑡𝑇𝑥) = (𝑡𝑇𝑆))
2019eleq1d 2819 . . . . . . . 8 (𝑥 = 𝑆 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝑆) ∈ 𝐴))
2120imbi2d 340 . . . . . . 7 (𝑥 = 𝑆 → ((𝜑 → (𝑡𝑇𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)))
22 stoweidlem21.9 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322expcom 413 . . . . . . 7 (𝑥 ∈ ℝ → (𝜑 → (𝑡𝑇𝑥) ∈ 𝐴))
2421, 23vtoclga 3556 . . . . . 6 (𝑆 ∈ ℝ → (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴))
253, 24mpcom 38 . . . . 5 (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)
2616, 25eqeltrid 2838 . . . 4 (𝜑 → (𝑇 × {𝑆}) ∈ 𝐴)
27 stoweidlem21.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28 stoweidlem21.2 . . . . 5 𝑡𝐻
29 nfcv 2898 . . . . . 6 𝑡𝑇
3012nfsn 4683 . . . . . 6 𝑡{𝑆}
3129, 30nfxp 5687 . . . . 5 𝑡(𝑇 × {𝑆})
3227, 28, 31stoweidlem8 46037 . . . 4 ((𝜑𝐻𝐴 ∧ (𝑇 × {𝑆}) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
3310, 26, 32mpd3an23 1465 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
349, 33eqeltrd 2834 . 2 (𝜑𝐺𝐴)
35 simpr 484 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
36 stoweidlem21.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
37 feq1 6686 . . . . . . . . . . . . 13 (𝑓 = 𝐻 → (𝑓:𝑇⟶ℝ ↔ 𝐻:𝑇⟶ℝ))
3837rspccva 3600 . . . . . . . . . . . 12 ((∀𝑓𝐴 𝑓:𝑇⟶ℝ ∧ 𝐻𝐴) → 𝐻:𝑇⟶ℝ)
3936, 10, 38syl2anc 584 . . . . . . . . . . 11 (𝜑𝐻:𝑇⟶ℝ)
4039ffvelcdmda 7074 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
413adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑆 ∈ ℝ)
4240, 41readdcld 11264 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) ∈ ℝ)
431fvmpt2 6997 . . . . . . . . 9 ((𝑡𝑇 ∧ ((𝐻𝑡) + 𝑆) ∈ ℝ) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4435, 42, 43syl2anc 584 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4544oveq1d 7420 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
4640recnd 11263 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
47 stoweidlem21.6 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4847ffvelcdmda 7074 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4948recnd 11263 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
503recnd 11263 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
5150adantr 480 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑆 ∈ ℂ)
5246, 49, 51subsub3d 11624 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
5345, 52eqtr4d 2773 . . . . . 6 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)))
5453fveq2d 6880 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) = (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))))
55 stoweidlem21.12 . . . . . 6 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5655r19.21bi 3234 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5754, 56eqbrtrd 5141 . . . 4 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
5857ex 412 . . 3 (𝜑 → (𝑡𝑇 → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
592, 58ralrimi 3240 . 2 (𝜑 → ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
60 stoweidlem21.1 . . . . 5 𝑡𝐺
6160nfeq2 2916 . . . 4 𝑡 𝑓 = 𝐺
62 fveq1 6875 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝑡) = (𝐺𝑡))
6362oveq1d 7420 . . . . . 6 (𝑓 = 𝐺 → ((𝑓𝑡) − (𝐹𝑡)) = ((𝐺𝑡) − (𝐹𝑡)))
6463fveq2d 6880 . . . . 5 (𝑓 = 𝐺 → (abs‘((𝑓𝑡) − (𝐹𝑡))) = (abs‘((𝐺𝑡) − (𝐹𝑡))))
6564breq1d 5129 . . . 4 (𝑓 = 𝐺 → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6661, 65ralbid 3255 . . 3 (𝑓 = 𝐺 → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6766rspcev 3601 . 2 ((𝐺𝐴 ∧ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
6834, 59, 67syl2anc 584 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2108  wnfc 2883  wral 3051  wrex 3060  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128   + caddc 11132   < clt 11269  cmin 11466  abscabs 15253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468
This theorem is referenced by:  stoweidlem62  46091
  Copyright terms: Public domain W3C validator