Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem21 Structured version   Visualization version   GIF version

Theorem stoweidlem21 43245
Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem21.1 𝑡𝐺
stoweidlem21.2 𝑡𝐻
stoweidlem21.3 𝑡𝑆
stoweidlem21.4 𝑡𝜑
stoweidlem21.5 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
stoweidlem21.6 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem21.7 (𝜑𝑆 ∈ ℝ)
stoweidlem21.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem21.9 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem21.10 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
stoweidlem21.11 (𝜑𝐻𝐴)
stoweidlem21.12 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
Assertion
Ref Expression
stoweidlem21 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐸,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐻,𝑔   𝜑,𝑓,𝑔   𝑆,𝑔   𝑥,𝑡,𝑇   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑆(𝑡,𝑓)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡)

Proof of Theorem stoweidlem21
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem21.5 . . . 4 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
2 stoweidlem21.4 . . . . 5 𝑡𝜑
3 stoweidlem21.7 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
4 fvconst2g 7022 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
53, 4sylan 583 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
65eqcomd 2743 . . . . . 6 ((𝜑𝑡𝑇) → 𝑆 = ((𝑇 × {𝑆})‘𝑡))
76oveq2d 7234 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) = ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡)))
82, 7mpteq2da 5154 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆)) = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
91, 8syl5eq 2790 . . 3 (𝜑𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
10 stoweidlem21.11 . . . 4 (𝜑𝐻𝐴)
11 fconstmpt 5616 . . . . . 6 (𝑇 × {𝑆}) = (𝑠𝑇𝑆)
12 stoweidlem21.3 . . . . . . 7 𝑡𝑆
13 nfcv 2904 . . . . . . 7 𝑠𝑆
14 eqidd 2738 . . . . . . 7 (𝑠 = 𝑡𝑆 = 𝑆)
1512, 13, 14cbvmpt 5161 . . . . . 6 (𝑠𝑇𝑆) = (𝑡𝑇𝑆)
1611, 15eqtri 2765 . . . . 5 (𝑇 × {𝑆}) = (𝑡𝑇𝑆)
1712nfeq2 2921 . . . . . . . . . 10 𝑡 𝑥 = 𝑆
18 simpl 486 . . . . . . . . . 10 ((𝑥 = 𝑆𝑡𝑇) → 𝑥 = 𝑆)
1917, 18mpteq2da 5154 . . . . . . . . 9 (𝑥 = 𝑆 → (𝑡𝑇𝑥) = (𝑡𝑇𝑆))
2019eleq1d 2822 . . . . . . . 8 (𝑥 = 𝑆 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝑆) ∈ 𝐴))
2120imbi2d 344 . . . . . . 7 (𝑥 = 𝑆 → ((𝜑 → (𝑡𝑇𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)))
22 stoweidlem21.9 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322expcom 417 . . . . . . 7 (𝑥 ∈ ℝ → (𝜑 → (𝑡𝑇𝑥) ∈ 𝐴))
2421, 23vtoclga 3494 . . . . . 6 (𝑆 ∈ ℝ → (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴))
253, 24mpcom 38 . . . . 5 (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)
2616, 25eqeltrid 2842 . . . 4 (𝜑 → (𝑇 × {𝑆}) ∈ 𝐴)
27 stoweidlem21.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28 stoweidlem21.2 . . . . 5 𝑡𝐻
29 nfcv 2904 . . . . . 6 𝑡𝑇
3012nfsn 4628 . . . . . 6 𝑡{𝑆}
3129, 30nfxp 5589 . . . . 5 𝑡(𝑇 × {𝑆})
3227, 28, 31stoweidlem8 43232 . . . 4 ((𝜑𝐻𝐴 ∧ (𝑇 × {𝑆}) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
3310, 26, 32mpd3an23 1465 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
349, 33eqeltrd 2838 . 2 (𝜑𝐺𝐴)
35 simpr 488 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
36 stoweidlem21.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
37 feq1 6531 . . . . . . . . . . . . 13 (𝑓 = 𝐻 → (𝑓:𝑇⟶ℝ ↔ 𝐻:𝑇⟶ℝ))
3837rspccva 3541 . . . . . . . . . . . 12 ((∀𝑓𝐴 𝑓:𝑇⟶ℝ ∧ 𝐻𝐴) → 𝐻:𝑇⟶ℝ)
3936, 10, 38syl2anc 587 . . . . . . . . . . 11 (𝜑𝐻:𝑇⟶ℝ)
4039ffvelrnda 6909 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
413adantr 484 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑆 ∈ ℝ)
4240, 41readdcld 10867 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) ∈ ℝ)
431fvmpt2 6834 . . . . . . . . 9 ((𝑡𝑇 ∧ ((𝐻𝑡) + 𝑆) ∈ ℝ) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4435, 42, 43syl2anc 587 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4544oveq1d 7233 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
4640recnd 10866 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
47 stoweidlem21.6 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4847ffvelrnda 6909 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4948recnd 10866 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
503recnd 10866 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
5150adantr 484 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑆 ∈ ℂ)
5246, 49, 51subsub3d 11224 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
5345, 52eqtr4d 2780 . . . . . 6 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)))
5453fveq2d 6726 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) = (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))))
55 stoweidlem21.12 . . . . . 6 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5655r19.21bi 3130 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5754, 56eqbrtrd 5080 . . . 4 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
5857ex 416 . . 3 (𝜑 → (𝑡𝑇 → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
592, 58ralrimi 3137 . 2 (𝜑 → ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
60 stoweidlem21.1 . . . . 5 𝑡𝐺
6160nfeq2 2921 . . . 4 𝑡 𝑓 = 𝐺
62 fveq1 6721 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝑡) = (𝐺𝑡))
6362oveq1d 7233 . . . . . 6 (𝑓 = 𝐺 → ((𝑓𝑡) − (𝐹𝑡)) = ((𝐺𝑡) − (𝐹𝑡)))
6463fveq2d 6726 . . . . 5 (𝑓 = 𝐺 → (abs‘((𝑓𝑡) − (𝐹𝑡))) = (abs‘((𝐺𝑡) − (𝐹𝑡))))
6564breq1d 5068 . . . 4 (𝑓 = 𝐺 → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6661, 65ralbid 3156 . . 3 (𝑓 = 𝐺 → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6766rspcev 3542 . 2 ((𝐺𝐴 ∧ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
6834, 59, 67syl2anc 587 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wnf 1791  wcel 2110  wnfc 2884  wral 3061  wrex 3062  {csn 4546   class class class wbr 5058  cmpt 5140   × cxp 5554  wf 6381  cfv 6385  (class class class)co 7218  cc 10732  cr 10733   + caddc 10737   < clt 10872  cmin 11067  abscabs 14802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-op 4553  df-uni 4825  df-br 5059  df-opab 5121  df-mpt 5141  df-id 5460  df-po 5473  df-so 5474  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-er 8396  df-en 8632  df-dom 8633  df-sdom 8634  df-pnf 10874  df-mnf 10875  df-ltxr 10877  df-sub 11069
This theorem is referenced by:  stoweidlem62  43286
  Copyright terms: Public domain W3C validator