Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem21 Structured version   Visualization version   GIF version

Theorem stoweidlem21 45544
Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem21.1 𝑡𝐺
stoweidlem21.2 𝑡𝐻
stoweidlem21.3 𝑡𝑆
stoweidlem21.4 𝑡𝜑
stoweidlem21.5 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
stoweidlem21.6 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem21.7 (𝜑𝑆 ∈ ℝ)
stoweidlem21.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem21.9 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem21.10 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
stoweidlem21.11 (𝜑𝐻𝐴)
stoweidlem21.12 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
Assertion
Ref Expression
stoweidlem21 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐸,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐻,𝑔   𝜑,𝑓,𝑔   𝑆,𝑔   𝑥,𝑡,𝑇   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑆(𝑡,𝑓)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡)

Proof of Theorem stoweidlem21
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem21.5 . . . 4 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
2 stoweidlem21.4 . . . . 5 𝑡𝜑
3 stoweidlem21.7 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
4 fvconst2g 7214 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
53, 4sylan 578 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
65eqcomd 2731 . . . . . 6 ((𝜑𝑡𝑇) → 𝑆 = ((𝑇 × {𝑆})‘𝑡))
76oveq2d 7435 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) = ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡)))
82, 7mpteq2da 5247 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆)) = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
91, 8eqtrid 2777 . . 3 (𝜑𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
10 stoweidlem21.11 . . . 4 (𝜑𝐻𝐴)
11 fconstmpt 5740 . . . . . 6 (𝑇 × {𝑆}) = (𝑠𝑇𝑆)
12 stoweidlem21.3 . . . . . . 7 𝑡𝑆
13 nfcv 2891 . . . . . . 7 𝑠𝑆
14 eqidd 2726 . . . . . . 7 (𝑠 = 𝑡𝑆 = 𝑆)
1512, 13, 14cbvmpt 5260 . . . . . 6 (𝑠𝑇𝑆) = (𝑡𝑇𝑆)
1611, 15eqtri 2753 . . . . 5 (𝑇 × {𝑆}) = (𝑡𝑇𝑆)
1712nfeq2 2909 . . . . . . . . . 10 𝑡 𝑥 = 𝑆
18 simpl 481 . . . . . . . . . 10 ((𝑥 = 𝑆𝑡𝑇) → 𝑥 = 𝑆)
1917, 18mpteq2da 5247 . . . . . . . . 9 (𝑥 = 𝑆 → (𝑡𝑇𝑥) = (𝑡𝑇𝑆))
2019eleq1d 2810 . . . . . . . 8 (𝑥 = 𝑆 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝑆) ∈ 𝐴))
2120imbi2d 339 . . . . . . 7 (𝑥 = 𝑆 → ((𝜑 → (𝑡𝑇𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)))
22 stoweidlem21.9 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322expcom 412 . . . . . . 7 (𝑥 ∈ ℝ → (𝜑 → (𝑡𝑇𝑥) ∈ 𝐴))
2421, 23vtoclga 3556 . . . . . 6 (𝑆 ∈ ℝ → (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴))
253, 24mpcom 38 . . . . 5 (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)
2616, 25eqeltrid 2829 . . . 4 (𝜑 → (𝑇 × {𝑆}) ∈ 𝐴)
27 stoweidlem21.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28 stoweidlem21.2 . . . . 5 𝑡𝐻
29 nfcv 2891 . . . . . 6 𝑡𝑇
3012nfsn 4713 . . . . . 6 𝑡{𝑆}
3129, 30nfxp 5711 . . . . 5 𝑡(𝑇 × {𝑆})
3227, 28, 31stoweidlem8 45531 . . . 4 ((𝜑𝐻𝐴 ∧ (𝑇 × {𝑆}) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
3310, 26, 32mpd3an23 1459 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
349, 33eqeltrd 2825 . 2 (𝜑𝐺𝐴)
35 simpr 483 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
36 stoweidlem21.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
37 feq1 6704 . . . . . . . . . . . . 13 (𝑓 = 𝐻 → (𝑓:𝑇⟶ℝ ↔ 𝐻:𝑇⟶ℝ))
3837rspccva 3605 . . . . . . . . . . . 12 ((∀𝑓𝐴 𝑓:𝑇⟶ℝ ∧ 𝐻𝐴) → 𝐻:𝑇⟶ℝ)
3936, 10, 38syl2anc 582 . . . . . . . . . . 11 (𝜑𝐻:𝑇⟶ℝ)
4039ffvelcdmda 7093 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
413adantr 479 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑆 ∈ ℝ)
4240, 41readdcld 11275 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) ∈ ℝ)
431fvmpt2 7015 . . . . . . . . 9 ((𝑡𝑇 ∧ ((𝐻𝑡) + 𝑆) ∈ ℝ) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4435, 42, 43syl2anc 582 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4544oveq1d 7434 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
4640recnd 11274 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
47 stoweidlem21.6 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4847ffvelcdmda 7093 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4948recnd 11274 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
503recnd 11274 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
5150adantr 479 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑆 ∈ ℂ)
5246, 49, 51subsub3d 11633 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
5345, 52eqtr4d 2768 . . . . . 6 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)))
5453fveq2d 6900 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) = (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))))
55 stoweidlem21.12 . . . . . 6 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5655r19.21bi 3238 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5754, 56eqbrtrd 5171 . . . 4 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
5857ex 411 . . 3 (𝜑 → (𝑡𝑇 → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
592, 58ralrimi 3244 . 2 (𝜑 → ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
60 stoweidlem21.1 . . . . 5 𝑡𝐺
6160nfeq2 2909 . . . 4 𝑡 𝑓 = 𝐺
62 fveq1 6895 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝑡) = (𝐺𝑡))
6362oveq1d 7434 . . . . . 6 (𝑓 = 𝐺 → ((𝑓𝑡) − (𝐹𝑡)) = ((𝐺𝑡) − (𝐹𝑡)))
6463fveq2d 6900 . . . . 5 (𝑓 = 𝐺 → (abs‘((𝑓𝑡) − (𝐹𝑡))) = (abs‘((𝐺𝑡) − (𝐹𝑡))))
6564breq1d 5159 . . . 4 (𝑓 = 𝐺 → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6661, 65ralbid 3260 . . 3 (𝑓 = 𝐺 → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6766rspcev 3606 . 2 ((𝐺𝐴 ∧ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
6834, 59, 67syl2anc 582 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wnf 1777  wcel 2098  wnfc 2875  wral 3050  wrex 3059  {csn 4630   class class class wbr 5149  cmpt 5232   × cxp 5676  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  cr 11139   + caddc 11143   < clt 11280  cmin 11476  abscabs 15217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-ltxr 11285  df-sub 11478
This theorem is referenced by:  stoweidlem62  45585
  Copyright terms: Public domain W3C validator