Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem21 Structured version   Visualization version   GIF version

Theorem stoweidlem21 46026
Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem21.1 𝑡𝐺
stoweidlem21.2 𝑡𝐻
stoweidlem21.3 𝑡𝑆
stoweidlem21.4 𝑡𝜑
stoweidlem21.5 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
stoweidlem21.6 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem21.7 (𝜑𝑆 ∈ ℝ)
stoweidlem21.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem21.9 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem21.10 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
stoweidlem21.11 (𝜑𝐻𝐴)
stoweidlem21.12 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
Assertion
Ref Expression
stoweidlem21 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐸,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐻,𝑔   𝜑,𝑓,𝑔   𝑆,𝑔   𝑥,𝑡,𝑇   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑆(𝑡,𝑓)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡)

Proof of Theorem stoweidlem21
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem21.5 . . . 4 𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆))
2 stoweidlem21.4 . . . . 5 𝑡𝜑
3 stoweidlem21.7 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
4 fvconst2g 7179 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
53, 4sylan 580 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝑇 × {𝑆})‘𝑡) = 𝑆)
65eqcomd 2736 . . . . . 6 ((𝜑𝑡𝑇) → 𝑆 = ((𝑇 × {𝑆})‘𝑡))
76oveq2d 7406 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) = ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡)))
82, 7mpteq2da 5202 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + 𝑆)) = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
91, 8eqtrid 2777 . . 3 (𝜑𝐺 = (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))))
10 stoweidlem21.11 . . . 4 (𝜑𝐻𝐴)
11 fconstmpt 5703 . . . . . 6 (𝑇 × {𝑆}) = (𝑠𝑇𝑆)
12 stoweidlem21.3 . . . . . . 7 𝑡𝑆
13 nfcv 2892 . . . . . . 7 𝑠𝑆
14 eqidd 2731 . . . . . . 7 (𝑠 = 𝑡𝑆 = 𝑆)
1512, 13, 14cbvmpt 5212 . . . . . 6 (𝑠𝑇𝑆) = (𝑡𝑇𝑆)
1611, 15eqtri 2753 . . . . 5 (𝑇 × {𝑆}) = (𝑡𝑇𝑆)
1712nfeq2 2910 . . . . . . . . . 10 𝑡 𝑥 = 𝑆
18 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑆𝑡𝑇) → 𝑥 = 𝑆)
1917, 18mpteq2da 5202 . . . . . . . . 9 (𝑥 = 𝑆 → (𝑡𝑇𝑥) = (𝑡𝑇𝑆))
2019eleq1d 2814 . . . . . . . 8 (𝑥 = 𝑆 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝑆) ∈ 𝐴))
2120imbi2d 340 . . . . . . 7 (𝑥 = 𝑆 → ((𝜑 → (𝑡𝑇𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)))
22 stoweidlem21.9 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322expcom 413 . . . . . . 7 (𝑥 ∈ ℝ → (𝜑 → (𝑡𝑇𝑥) ∈ 𝐴))
2421, 23vtoclga 3546 . . . . . 6 (𝑆 ∈ ℝ → (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴))
253, 24mpcom 38 . . . . 5 (𝜑 → (𝑡𝑇𝑆) ∈ 𝐴)
2616, 25eqeltrid 2833 . . . 4 (𝜑 → (𝑇 × {𝑆}) ∈ 𝐴)
27 stoweidlem21.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28 stoweidlem21.2 . . . . 5 𝑡𝐻
29 nfcv 2892 . . . . . 6 𝑡𝑇
3012nfsn 4674 . . . . . 6 𝑡{𝑆}
3129, 30nfxp 5674 . . . . 5 𝑡(𝑇 × {𝑆})
3227, 28, 31stoweidlem8 46013 . . . 4 ((𝜑𝐻𝐴 ∧ (𝑇 × {𝑆}) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
3310, 26, 32mpd3an23 1465 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐻𝑡) + ((𝑇 × {𝑆})‘𝑡))) ∈ 𝐴)
349, 33eqeltrd 2829 . 2 (𝜑𝐺𝐴)
35 simpr 484 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
36 stoweidlem21.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
37 feq1 6669 . . . . . . . . . . . . 13 (𝑓 = 𝐻 → (𝑓:𝑇⟶ℝ ↔ 𝐻:𝑇⟶ℝ))
3837rspccva 3590 . . . . . . . . . . . 12 ((∀𝑓𝐴 𝑓:𝑇⟶ℝ ∧ 𝐻𝐴) → 𝐻:𝑇⟶ℝ)
3936, 10, 38syl2anc 584 . . . . . . . . . . 11 (𝜑𝐻:𝑇⟶ℝ)
4039ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
413adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑆 ∈ ℝ)
4240, 41readdcld 11210 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐻𝑡) + 𝑆) ∈ ℝ)
431fvmpt2 6982 . . . . . . . . 9 ((𝑡𝑇 ∧ ((𝐻𝑡) + 𝑆) ∈ ℝ) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4435, 42, 43syl2anc 584 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐻𝑡) + 𝑆))
4544oveq1d 7405 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
4640recnd 11209 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
47 stoweidlem21.6 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4847ffvelcdmda 7059 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4948recnd 11209 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
503recnd 11209 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
5150adantr 480 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑆 ∈ ℂ)
5246, 49, 51subsub3d 11570 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)) = (((𝐻𝑡) + 𝑆) − (𝐹𝑡)))
5345, 52eqtr4d 2768 . . . . . 6 ((𝜑𝑡𝑇) → ((𝐺𝑡) − (𝐹𝑡)) = ((𝐻𝑡) − ((𝐹𝑡) − 𝑆)))
5453fveq2d 6865 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) = (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))))
55 stoweidlem21.12 . . . . . 6 (𝜑 → ∀𝑡𝑇 (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5655r19.21bi 3230 . . . . 5 ((𝜑𝑡𝑇) → (abs‘((𝐻𝑡) − ((𝐹𝑡) − 𝑆))) < 𝐸)
5754, 56eqbrtrd 5132 . . . 4 ((𝜑𝑡𝑇) → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
5857ex 412 . . 3 (𝜑 → (𝑡𝑇 → (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
592, 58ralrimi 3236 . 2 (𝜑 → ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸)
60 stoweidlem21.1 . . . . 5 𝑡𝐺
6160nfeq2 2910 . . . 4 𝑡 𝑓 = 𝐺
62 fveq1 6860 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝑡) = (𝐺𝑡))
6362oveq1d 7405 . . . . . 6 (𝑓 = 𝐺 → ((𝑓𝑡) − (𝐹𝑡)) = ((𝐺𝑡) − (𝐹𝑡)))
6463fveq2d 6865 . . . . 5 (𝑓 = 𝐺 → (abs‘((𝑓𝑡) − (𝐹𝑡))) = (abs‘((𝐺𝑡) − (𝐹𝑡))))
6564breq1d 5120 . . . 4 (𝑓 = 𝐺 → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6661, 65ralbid 3251 . . 3 (𝑓 = 𝐺 → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸 ↔ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸))
6766rspcev 3591 . 2 ((𝐺𝐴 ∧ ∀𝑡𝑇 (abs‘((𝐺𝑡) − (𝐹𝑡))) < 𝐸) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
6834, 59, 67syl2anc 584 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wral 3045  wrex 3054  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074   + caddc 11078   < clt 11215  cmin 11412  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414
This theorem is referenced by:  stoweidlem62  46067
  Copyright terms: Public domain W3C validator