![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dnsconst | Structured version Visualization version GIF version |
Description: If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (◡𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 7059). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
dnsconst.1 | ⊢ 𝑋 = ∪ 𝐽 |
dnsconst.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
dnsconst | ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | dnsconst.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | dnsconst.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
4 | 2, 3 | cnf 23137 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
5 | ffn 6716 | . . 3 ⊢ (𝐹:𝑋⟶𝑌 → 𝐹 Fn 𝑋) | |
6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 Fn 𝑋) |
7 | simpr3 1194 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋) | |
8 | simpll 766 | . . . . . 6 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐾 ∈ Fre) | |
9 | simpr1 1192 | . . . . . 6 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑃 ∈ 𝑌) | |
10 | 3 | t1sncld 23217 | . . . . . 6 ⊢ ((𝐾 ∈ Fre ∧ 𝑃 ∈ 𝑌) → {𝑃} ∈ (Clsd‘𝐾)) |
11 | 8, 9, 10 | syl2anc 583 | . . . . 5 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → {𝑃} ∈ (Clsd‘𝐾)) |
12 | cnclima 23159 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {𝑃} ∈ (Clsd‘𝐾)) → (◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽)) | |
13 | 1, 11, 12 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽)) |
14 | simpr2 1193 | . . . 4 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ (◡𝐹 “ {𝑃})) | |
15 | 2 | clsss2 22963 | . . . 4 ⊢ (((◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽) ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃})) → ((cls‘𝐽)‘𝐴) ⊆ (◡𝐹 “ {𝑃})) |
16 | 13, 14, 15 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) ⊆ (◡𝐹 “ {𝑃})) |
17 | 7, 16 | eqsstrrd 4017 | . 2 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑋 ⊆ (◡𝐹 “ {𝑃})) |
18 | fconst3 7219 | . 2 ⊢ (𝐹:𝑋⟶{𝑃} ↔ (𝐹 Fn 𝑋 ∧ 𝑋 ⊆ (◡𝐹 “ {𝑃}))) | |
19 | 6, 17, 18 | sylanbrc 582 | 1 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 {csn 4624 ∪ cuni 4903 ◡ccnv 5671 “ cima 5675 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 Clsdccld 22907 clsccl 22909 Cn ccn 23115 Frect1 23198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8838 df-top 22783 df-topon 22800 df-cld 22910 df-cls 22912 df-cn 23118 df-t1 23205 |
This theorem is referenced by: ipasslem8 30634 |
Copyright terms: Public domain | W3C validator |