MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dnsconst Structured version   Visualization version   GIF version

Theorem dnsconst 23299
Description: If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 6995). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
dnsconst.1 𝑋 = 𝐽
dnsconst.2 𝑌 = 𝐾
Assertion
Ref Expression
dnsconst (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃})

Proof of Theorem dnsconst
StepHypRef Expression
1 simplr 768 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 dnsconst.1 . . . 4 𝑋 = 𝐽
3 dnsconst.2 . . . 4 𝑌 = 𝐾
42, 3cnf 23167 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
5 ffn 6657 . . 3 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
61, 4, 53syl 18 . 2 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 Fn 𝑋)
7 simpr3 1197 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
8 simpll 766 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐾 ∈ Fre)
9 simpr1 1195 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑃𝑌)
103t1sncld 23247 . . . . . 6 ((𝐾 ∈ Fre ∧ 𝑃𝑌) → {𝑃} ∈ (Clsd‘𝐾))
118, 9, 10syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → {𝑃} ∈ (Clsd‘𝐾))
12 cnclima 23189 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {𝑃} ∈ (Clsd‘𝐾)) → (𝐹 “ {𝑃}) ∈ (Clsd‘𝐽))
131, 11, 12syl2anc 584 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝐹 “ {𝑃}) ∈ (Clsd‘𝐽))
14 simpr2 1196 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ (𝐹 “ {𝑃}))
152clsss2 22993 . . . 4 (((𝐹 “ {𝑃}) ∈ (Clsd‘𝐽) ∧ 𝐴 ⊆ (𝐹 “ {𝑃})) → ((cls‘𝐽)‘𝐴) ⊆ (𝐹 “ {𝑃}))
1613, 14, 15syl2anc 584 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) ⊆ (𝐹 “ {𝑃}))
177, 16eqsstrrd 3965 . 2 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑋 ⊆ (𝐹 “ {𝑃}))
18 fconst3 7153 . 2 (𝐹:𝑋⟶{𝑃} ↔ (𝐹 Fn 𝑋𝑋 ⊆ (𝐹 “ {𝑃})))
196, 17, 18sylanbrc 583 1 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897  {csn 4575   cuni 4858  ccnv 5618  cima 5622   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352  Clsdccld 22937  clsccl 22939   Cn ccn 23145  Frect1 23228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-top 22815  df-topon 22832  df-cld 22940  df-cls 22942  df-cn 23148  df-t1 23235
This theorem is referenced by:  ipasslem8  30824
  Copyright terms: Public domain W3C validator