MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dnsconst Structured version   Visualization version   GIF version

Theorem dnsconst 23326
Description: If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 7064). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
dnsconst.1 𝑋 = 𝐽
dnsconst.2 𝑌 = 𝐾
Assertion
Ref Expression
dnsconst (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃})

Proof of Theorem dnsconst
StepHypRef Expression
1 simplr 767 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 dnsconst.1 . . . 4 𝑋 = 𝐽
3 dnsconst.2 . . . 4 𝑌 = 𝐾
42, 3cnf 23194 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
5 ffn 6723 . . 3 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
61, 4, 53syl 18 . 2 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 Fn 𝑋)
7 simpr3 1193 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
8 simpll 765 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐾 ∈ Fre)
9 simpr1 1191 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑃𝑌)
103t1sncld 23274 . . . . . 6 ((𝐾 ∈ Fre ∧ 𝑃𝑌) → {𝑃} ∈ (Clsd‘𝐾))
118, 9, 10syl2anc 582 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → {𝑃} ∈ (Clsd‘𝐾))
12 cnclima 23216 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {𝑃} ∈ (Clsd‘𝐾)) → (𝐹 “ {𝑃}) ∈ (Clsd‘𝐽))
131, 11, 12syl2anc 582 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝐹 “ {𝑃}) ∈ (Clsd‘𝐽))
14 simpr2 1192 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ (𝐹 “ {𝑃}))
152clsss2 23020 . . . 4 (((𝐹 “ {𝑃}) ∈ (Clsd‘𝐽) ∧ 𝐴 ⊆ (𝐹 “ {𝑃})) → ((cls‘𝐽)‘𝐴) ⊆ (𝐹 “ {𝑃}))
1613, 14, 15syl2anc 582 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) ⊆ (𝐹 “ {𝑃}))
177, 16eqsstrrd 4016 . 2 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑋 ⊆ (𝐹 “ {𝑃}))
18 fconst3 7225 . 2 (𝐹:𝑋⟶{𝑃} ↔ (𝐹 Fn 𝑋𝑋 ⊆ (𝐹 “ {𝑃})))
196, 17, 18sylanbrc 581 1 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3944  {csn 4630   cuni 4909  ccnv 5677  cima 5681   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  Clsdccld 22964  clsccl 22966   Cn ccn 23172  Frect1 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-top 22840  df-topon 22857  df-cld 22967  df-cls 22969  df-cn 23175  df-t1 23262
This theorem is referenced by:  ipasslem8  30719
  Copyright terms: Public domain W3C validator