| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dnsconst | Structured version Visualization version GIF version | ||
| Description: If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (◡𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 6984). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| dnsconst.1 | ⊢ 𝑋 = ∪ 𝐽 |
| dnsconst.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| dnsconst | ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | dnsconst.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | dnsconst.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23154 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| 5 | ffn 6647 | . . 3 ⊢ (𝐹:𝑋⟶𝑌 → 𝐹 Fn 𝑋) | |
| 6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 Fn 𝑋) |
| 7 | simpr3 1197 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋) | |
| 8 | simpll 766 | . . . . . 6 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐾 ∈ Fre) | |
| 9 | simpr1 1195 | . . . . . 6 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑃 ∈ 𝑌) | |
| 10 | 3 | t1sncld 23234 | . . . . . 6 ⊢ ((𝐾 ∈ Fre ∧ 𝑃 ∈ 𝑌) → {𝑃} ∈ (Clsd‘𝐾)) |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → {𝑃} ∈ (Clsd‘𝐾)) |
| 12 | cnclima 23176 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {𝑃} ∈ (Clsd‘𝐾)) → (◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽)) | |
| 13 | 1, 11, 12 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽)) |
| 14 | simpr2 1196 | . . . 4 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ (◡𝐹 “ {𝑃})) | |
| 15 | 2 | clsss2 22980 | . . . 4 ⊢ (((◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽) ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃})) → ((cls‘𝐽)‘𝐴) ⊆ (◡𝐹 “ {𝑃})) |
| 16 | 13, 14, 15 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) ⊆ (◡𝐹 “ {𝑃})) |
| 17 | 7, 16 | eqsstrrd 3968 | . 2 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑋 ⊆ (◡𝐹 “ {𝑃})) |
| 18 | fconst3 7142 | . 2 ⊢ (𝐹:𝑋⟶{𝑃} ↔ (𝐹 Fn 𝑋 ∧ 𝑋 ⊆ (◡𝐹 “ {𝑃}))) | |
| 19 | 6, 17, 18 | sylanbrc 583 | 1 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 {csn 4574 ∪ cuni 4857 ◡ccnv 5613 “ cima 5617 Fn wfn 6472 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 Clsdccld 22924 clsccl 22926 Cn ccn 23132 Frect1 23215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-top 22802 df-topon 22819 df-cld 22927 df-cls 22929 df-cn 23135 df-t1 23222 |
| This theorem is referenced by: ipasslem8 30807 |
| Copyright terms: Public domain | W3C validator |