| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dnsconst | Structured version Visualization version GIF version | ||
| Description: If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (◡𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 6995). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| dnsconst.1 | ⊢ 𝑋 = ∪ 𝐽 |
| dnsconst.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| dnsconst | ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | dnsconst.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | dnsconst.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23167 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| 5 | ffn 6657 | . . 3 ⊢ (𝐹:𝑋⟶𝑌 → 𝐹 Fn 𝑋) | |
| 6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 Fn 𝑋) |
| 7 | simpr3 1197 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋) | |
| 8 | simpll 766 | . . . . . 6 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐾 ∈ Fre) | |
| 9 | simpr1 1195 | . . . . . 6 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑃 ∈ 𝑌) | |
| 10 | 3 | t1sncld 23247 | . . . . . 6 ⊢ ((𝐾 ∈ Fre ∧ 𝑃 ∈ 𝑌) → {𝑃} ∈ (Clsd‘𝐾)) |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → {𝑃} ∈ (Clsd‘𝐾)) |
| 12 | cnclima 23189 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {𝑃} ∈ (Clsd‘𝐾)) → (◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽)) | |
| 13 | 1, 11, 12 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽)) |
| 14 | simpr2 1196 | . . . 4 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ (◡𝐹 “ {𝑃})) | |
| 15 | 2 | clsss2 22993 | . . . 4 ⊢ (((◡𝐹 “ {𝑃}) ∈ (Clsd‘𝐽) ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃})) → ((cls‘𝐽)‘𝐴) ⊆ (◡𝐹 “ {𝑃})) |
| 16 | 13, 14, 15 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) ⊆ (◡𝐹 “ {𝑃})) |
| 17 | 7, 16 | eqsstrrd 3965 | . 2 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑋 ⊆ (◡𝐹 “ {𝑃})) |
| 18 | fconst3 7153 | . 2 ⊢ (𝐹:𝑋⟶{𝑃} ↔ (𝐹 Fn 𝑋 ∧ 𝑋 ⊆ (◡𝐹 “ {𝑃}))) | |
| 19 | 6, 17, 18 | sylanbrc 583 | 1 ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4575 ∪ cuni 4858 ◡ccnv 5618 “ cima 5622 Fn wfn 6482 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 Clsdccld 22937 clsccl 22939 Cn ccn 23145 Frect1 23228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-top 22815 df-topon 22832 df-cld 22940 df-cls 22942 df-cn 23148 df-t1 23235 |
| This theorem is referenced by: ipasslem8 30824 |
| Copyright terms: Public domain | W3C validator |