MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dnsconst Structured version   Visualization version   GIF version

Theorem dnsconst 23312
Description: If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 7062). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
dnsconst.1 𝑋 = 𝐽
dnsconst.2 𝑌 = 𝐾
Assertion
Ref Expression
dnsconst (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃})

Proof of Theorem dnsconst
StepHypRef Expression
1 simplr 767 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 dnsconst.1 . . . 4 𝑋 = 𝐽
3 dnsconst.2 . . . 4 𝑌 = 𝐾
42, 3cnf 23180 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
5 ffn 6721 . . 3 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
61, 4, 53syl 18 . 2 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹 Fn 𝑋)
7 simpr3 1193 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
8 simpll 765 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐾 ∈ Fre)
9 simpr1 1191 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑃𝑌)
103t1sncld 23260 . . . . . 6 ((𝐾 ∈ Fre ∧ 𝑃𝑌) → {𝑃} ∈ (Clsd‘𝐾))
118, 9, 10syl2anc 582 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → {𝑃} ∈ (Clsd‘𝐾))
12 cnclima 23202 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {𝑃} ∈ (Clsd‘𝐾)) → (𝐹 “ {𝑃}) ∈ (Clsd‘𝐽))
131, 11, 12syl2anc 582 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝐹 “ {𝑃}) ∈ (Clsd‘𝐽))
14 simpr2 1192 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ⊆ (𝐹 “ {𝑃}))
152clsss2 23006 . . . 4 (((𝐹 “ {𝑃}) ∈ (Clsd‘𝐽) ∧ 𝐴 ⊆ (𝐹 “ {𝑃})) → ((cls‘𝐽)‘𝐴) ⊆ (𝐹 “ {𝑃}))
1613, 14, 15syl2anc 582 . . 3 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) ⊆ (𝐹 “ {𝑃}))
177, 16eqsstrrd 4017 . 2 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝑋 ⊆ (𝐹 “ {𝑃}))
18 fconst3 7223 . 2 (𝐹:𝑋⟶{𝑃} ↔ (𝐹 Fn 𝑋𝑋 ⊆ (𝐹 “ {𝑃})))
196, 17, 18sylanbrc 581 1 (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃𝑌𝐴 ⊆ (𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3945  {csn 4629   cuni 4908  ccnv 5676  cima 5680   Fn wfn 6542  wf 6543  cfv 6547  (class class class)co 7417  Clsdccld 22950  clsccl 22952   Cn ccn 23158  Frect1 23241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-map 8845  df-top 22826  df-topon 22843  df-cld 22953  df-cls 22955  df-cn 23161  df-t1 23248
This theorem is referenced by:  ipasslem8  30703
  Copyright terms: Public domain W3C validator