MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0cld Structured version   Visualization version   GIF version

Theorem r0cld 23625
Description: The analogue of the T1 axiom (singletons are closed) for an R0 space. In an R0 space the set of all points topologically indistinguishable from 𝐴 is closed. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
r0cld ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)} ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝑜,𝑦,𝑧,𝐴   𝑜,𝐽,𝑥,𝑦,𝑧   𝑜,𝐹,𝑧   𝑜,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem r0cld
StepHypRef Expression
1 kqval.2 . . . . . 6 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 23612 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
323ad2ant1 1133 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐹 Fn 𝑋)
4 fncnvima2 7033 . . . 4 (𝐹 Fn 𝑋 → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}})
53, 4syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}})
6 fvex 6871 . . . . . 6 (𝐹𝑧) ∈ V
76elsn 4604 . . . . 5 ((𝐹𝑧) ∈ {(𝐹𝐴)} ↔ (𝐹𝑧) = (𝐹𝐴))
8 simpl1 1192 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
9 simpr 484 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝑧𝑋)
10 simpl3 1194 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝐴𝑋)
111kqfeq 23611 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝐴𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑦𝐽 (𝑧𝑦𝐴𝑦)))
12 eleq2w 2812 . . . . . . . . 9 (𝑦 = 𝑜 → (𝑧𝑦𝑧𝑜))
13 eleq2w 2812 . . . . . . . . 9 (𝑦 = 𝑜 → (𝐴𝑦𝐴𝑜))
1412, 13bibi12d 345 . . . . . . . 8 (𝑦 = 𝑜 → ((𝑧𝑦𝐴𝑦) ↔ (𝑧𝑜𝐴𝑜)))
1514cbvralvw 3215 . . . . . . 7 (∀𝑦𝐽 (𝑧𝑦𝐴𝑦) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜))
1611, 15bitrdi 287 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝐴𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
178, 9, 10, 16syl3anc 1373 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
187, 17bitrid 283 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {(𝐹𝐴)} ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
1918rabbidva 3412 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}} = {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)})
205, 19eqtrd 2764 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)})
211kqid 23615 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
22213ad2ant1 1133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
23 simp2 1137 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (KQ‘𝐽) ∈ Fre)
24 simp3 1138 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐴𝑋)
25 fnfvelrn 7052 . . . . . 6 ((𝐹 Fn 𝑋𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
263, 24, 25syl2anc 584 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
271kqtopon 23614 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
28273ad2ant1 1133 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
29 toponuni 22801 . . . . . 6 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ran 𝐹 = (KQ‘𝐽))
3028, 29syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → ran 𝐹 = (KQ‘𝐽))
3126, 30eleqtrd 2830 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (KQ‘𝐽))
32 eqid 2729 . . . . 5 (KQ‘𝐽) = (KQ‘𝐽)
3332t1sncld 23213 . . . 4 (((KQ‘𝐽) ∈ Fre ∧ (𝐹𝐴) ∈ (KQ‘𝐽)) → {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽)))
3423, 31, 33syl2anc 584 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽)))
35 cnclima 23155 . . 3 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ {(𝐹𝐴)}) ∈ (Clsd‘𝐽))
3622, 34, 35syl2anc 584 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) ∈ (Clsd‘𝐽))
3720, 36eqeltrrd 2829 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)} ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  {csn 4589   cuni 4871  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  cfv 6511  (class class class)co 7387  TopOnctopon 22797  Clsdccld 22903   Cn ccn 23111  Frect1 23194  KQckq 23580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-qtop 17470  df-top 22781  df-topon 22798  df-cld 22906  df-cn 23114  df-t1 23201  df-kq 23581
This theorem is referenced by:  nrmr0reg  23636
  Copyright terms: Public domain W3C validator