MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0cld Structured version   Visualization version   GIF version

Theorem r0cld 23681
Description: The analogue of the T1 axiom (singletons are closed) for an R0 space. In an R0 space the set of all points topologically indistinguishable from 𝐴 is closed. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
r0cld ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)} ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝑜,𝑦,𝑧,𝐴   𝑜,𝐽,𝑥,𝑦,𝑧   𝑜,𝐹,𝑧   𝑜,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem r0cld
StepHypRef Expression
1 kqval.2 . . . . . 6 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 23668 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
323ad2ant1 1133 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐹 Fn 𝑋)
4 fncnvima2 7056 . . . 4 (𝐹 Fn 𝑋 → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}})
53, 4syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}})
6 fvex 6894 . . . . . 6 (𝐹𝑧) ∈ V
76elsn 4621 . . . . 5 ((𝐹𝑧) ∈ {(𝐹𝐴)} ↔ (𝐹𝑧) = (𝐹𝐴))
8 simpl1 1192 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
9 simpr 484 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝑧𝑋)
10 simpl3 1194 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → 𝐴𝑋)
111kqfeq 23667 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝐴𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑦𝐽 (𝑧𝑦𝐴𝑦)))
12 eleq2w 2819 . . . . . . . . 9 (𝑦 = 𝑜 → (𝑧𝑦𝑧𝑜))
13 eleq2w 2819 . . . . . . . . 9 (𝑦 = 𝑜 → (𝐴𝑦𝐴𝑜))
1412, 13bibi12d 345 . . . . . . . 8 (𝑦 = 𝑜 → ((𝑧𝑦𝐴𝑦) ↔ (𝑧𝑜𝐴𝑜)))
1514cbvralvw 3224 . . . . . . 7 (∀𝑦𝐽 (𝑧𝑦𝐴𝑦) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜))
1611, 15bitrdi 287 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝐴𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
178, 9, 10, 16syl3anc 1373 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
187, 17bitrid 283 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {(𝐹𝐴)} ↔ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)))
1918rabbidva 3427 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ (𝐹𝑧) ∈ {(𝐹𝐴)}} = {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)})
205, 19eqtrd 2771 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) = {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)})
211kqid 23671 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
22213ad2ant1 1133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
23 simp2 1137 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (KQ‘𝐽) ∈ Fre)
24 simp3 1138 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → 𝐴𝑋)
25 fnfvelrn 7075 . . . . . 6 ((𝐹 Fn 𝑋𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
263, 24, 25syl2anc 584 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
271kqtopon 23670 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
28273ad2ant1 1133 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
29 toponuni 22857 . . . . . 6 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ran 𝐹 = (KQ‘𝐽))
3028, 29syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → ran 𝐹 = (KQ‘𝐽))
3126, 30eleqtrd 2837 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (KQ‘𝐽))
32 eqid 2736 . . . . 5 (KQ‘𝐽) = (KQ‘𝐽)
3332t1sncld 23269 . . . 4 (((KQ‘𝐽) ∈ Fre ∧ (𝐹𝐴) ∈ (KQ‘𝐽)) → {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽)))
3423, 31, 33syl2anc 584 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽)))
35 cnclima 23211 . . 3 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ {(𝐹𝐴)} ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ {(𝐹𝐴)}) ∈ (Clsd‘𝐽))
3622, 34, 35syl2anc 584 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → (𝐹 “ {(𝐹𝐴)}) ∈ (Clsd‘𝐽))
3720, 36eqeltrrd 2836 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre ∧ 𝐴𝑋) → {𝑧𝑋 ∣ ∀𝑜𝐽 (𝑧𝑜𝐴𝑜)} ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {crab 3420  {csn 4606   cuni 4888  cmpt 5206  ccnv 5658  ran crn 5660  cima 5662   Fn wfn 6531  cfv 6536  (class class class)co 7410  TopOnctopon 22853  Clsdccld 22959   Cn ccn 23167  Frect1 23250  KQckq 23636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-qtop 17526  df-top 22837  df-topon 22854  df-cld 22962  df-cn 23170  df-t1 23257  df-kq 23637
This theorem is referenced by:  nrmr0reg  23692
  Copyright terms: Public domain W3C validator