MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sncld Structured version   Visualization version   GIF version

Theorem sncld 23234
Description: A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
sncld ((𝐽 ∈ Haus ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))

Proof of Theorem sncld
StepHypRef Expression
1 haust1 23215 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 t1sep.1 . . 3 𝑋 = 𝐽
32t1sncld 23189 . 2 ((𝐽 ∈ Fre ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))
41, 3sylan 580 1 ((𝐽 ∈ Haus ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4585   cuni 4867  cfv 6499  Clsdccld 22879  Frect1 23170  Hauscha 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-topgen 17382  df-top 22757  df-topon 22774  df-cld 22882  df-t1 23177  df-haus 23178
This theorem is referenced by:  tgphaus  23980  cnn0opn  24651  csscld  25125  clsocv  25126  abelth  26327  readvrec2  42322  sncldre  45011  dirkercncflem2  46075
  Copyright terms: Public domain W3C validator