| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sncld | Structured version Visualization version GIF version | ||
| Description: A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| sncld | ⊢ ((𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23245 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | t1sep.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | t1sncld 23219 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4597 ∪ cuni 4879 ‘cfv 6519 Clsdccld 22909 Frect1 23200 Hauscha 23201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-topgen 17412 df-top 22787 df-topon 22804 df-cld 22912 df-t1 23207 df-haus 23208 |
| This theorem is referenced by: tgphaus 24010 cnn0opn 24681 csscld 25156 clsocv 25157 abelth 26358 readvrec2 42341 sncldre 45010 dirkercncflem2 46075 |
| Copyright terms: Public domain | W3C validator |