MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sncld Structured version   Visualization version   GIF version

Theorem sncld 23281
Description: A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
sncld ((𝐽 ∈ Haus ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))

Proof of Theorem sncld
StepHypRef Expression
1 haust1 23262 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 t1sep.1 . . 3 𝑋 = 𝐽
32t1sncld 23236 . 2 ((𝐽 ∈ Fre ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))
41, 3sylan 580 1 ((𝐽 ∈ Haus ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4571   cuni 4854  cfv 6476  Clsdccld 22926  Frect1 23217  Hauscha 23218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-topgen 17342  df-top 22804  df-topon 22821  df-cld 22929  df-t1 23224  df-haus 23225
This theorem is referenced by:  tgphaus  24027  cnn0opn  24697  csscld  25171  clsocv  25172  abelth  26373  readvrec2  42394  sncldre  45081  dirkercncflem2  46142
  Copyright terms: Public domain W3C validator