MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sncld Structured version   Visualization version   GIF version

Theorem sncld 23325
Description: A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
sncld ((𝐽 ∈ Haus ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))

Proof of Theorem sncld
StepHypRef Expression
1 haust1 23306 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 t1sep.1 . . 3 𝑋 = 𝐽
32t1sncld 23280 . 2 ((𝐽 ∈ Fre ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))
41, 3sylan 580 1 ((𝐽 ∈ Haus ∧ 𝑃𝑋) → {𝑃} ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {csn 4606   cuni 4887  cfv 6541  Clsdccld 22970  Frect1 23261  Hauscha 23262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-topgen 17459  df-top 22848  df-topon 22865  df-cld 22973  df-t1 23268  df-haus 23269
This theorem is referenced by:  tgphaus  24071  cnn0opn  24744  csscld  25219  clsocv  25220  abelth  26421  readvrec2  42354  sncldre  45006  dirkercncflem2  46076
  Copyright terms: Public domain W3C validator