| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpt1 | Structured version Visualization version GIF version | ||
| Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgpt1.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| Ref | Expression |
|---|---|
| tgpt1 | ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23246 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | tgpgrp 23972 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
| 3 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | eqid 2730 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | 3, 4 | grpidcl 18904 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 7 | tgpt1.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 8 | 7, 3 | tgptopon 23976 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 9 | toponuni 22808 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (Base‘𝐺) = ∪ 𝐽) |
| 11 | 6, 10 | eleqtrd 2831 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ ∪ 𝐽) |
| 12 | eqid 2730 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | t1sncld 23220 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ (0g‘𝐺) ∈ ∪ 𝐽) → {(0g‘𝐺)} ∈ (Clsd‘𝐽)) |
| 14 | 13 | expcom 413 | . . . 4 ⊢ ((0g‘𝐺) ∈ ∪ 𝐽 → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 15 | 11, 14 | syl 17 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 16 | 4, 7 | tgphaus 24011 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 17 | 15, 16 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
| 18 | 1, 17 | impbid2 226 | 1 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4592 ∪ cuni 4874 ‘cfv 6514 Basecbs 17186 TopOpenctopn 17391 0gc0g 17409 Grpcgrp 18872 TopOnctopon 22804 Clsdccld 22910 Frect1 23201 Hauscha 23202 TopGrpctgp 23965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-0g 17411 df-topgen 17413 df-plusf 18573 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-cn 23121 df-t1 23208 df-haus 23209 df-tx 23456 df-tmd 23966 df-tgp 23967 |
| This theorem is referenced by: tgpt0 24013 |
| Copyright terms: Public domain | W3C validator |