| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpt1 | Structured version Visualization version GIF version | ||
| Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgpt1.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| Ref | Expression |
|---|---|
| tgpt1 | ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23360 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | tgpgrp 24086 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
| 3 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | eqid 2737 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | 3, 4 | grpidcl 18983 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 7 | tgpt1.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 8 | 7, 3 | tgptopon 24090 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 9 | toponuni 22920 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (Base‘𝐺) = ∪ 𝐽) |
| 11 | 6, 10 | eleqtrd 2843 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ ∪ 𝐽) |
| 12 | eqid 2737 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | t1sncld 23334 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ (0g‘𝐺) ∈ ∪ 𝐽) → {(0g‘𝐺)} ∈ (Clsd‘𝐽)) |
| 14 | 13 | expcom 413 | . . . 4 ⊢ ((0g‘𝐺) ∈ ∪ 𝐽 → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 15 | 11, 14 | syl 17 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 16 | 4, 7 | tgphaus 24125 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 17 | 15, 16 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
| 18 | 1, 17 | impbid2 226 | 1 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {csn 4626 ∪ cuni 4907 ‘cfv 6561 Basecbs 17247 TopOpenctopn 17466 0gc0g 17484 Grpcgrp 18951 TopOnctopon 22916 Clsdccld 23024 Frect1 23315 Hauscha 23316 TopGrpctgp 24079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 df-0g 17486 df-topgen 17488 df-plusf 18652 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-cn 23235 df-t1 23322 df-haus 23323 df-tx 23570 df-tmd 24080 df-tgp 24081 |
| This theorem is referenced by: tgpt0 24127 |
| Copyright terms: Public domain | W3C validator |