MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpt1 Structured version   Visualization version   GIF version

Theorem tgpt1 24147
Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypothesis
Ref Expression
tgpt1.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgpt1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))

Proof of Theorem tgpt1
StepHypRef Expression
1 haust1 23381 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 tgpgrp 24107 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
3 eqid 2740 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2740 . . . . . . 7 (0g𝐺) = (0g𝐺)
53, 4grpidcl 19005 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
62, 5syl 17 . . . . 5 (𝐺 ∈ TopGrp → (0g𝐺) ∈ (Base‘𝐺))
7 tgpt1.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
87, 3tgptopon 24111 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
9 toponuni 22941 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
108, 9syl 17 . . . . 5 (𝐺 ∈ TopGrp → (Base‘𝐺) = 𝐽)
116, 10eleqtrd 2846 . . . 4 (𝐺 ∈ TopGrp → (0g𝐺) ∈ 𝐽)
12 eqid 2740 . . . . . 6 𝐽 = 𝐽
1312t1sncld 23355 . . . . 5 ((𝐽 ∈ Fre ∧ (0g𝐺) ∈ 𝐽) → {(0g𝐺)} ∈ (Clsd‘𝐽))
1413expcom 413 . . . 4 ((0g𝐺) ∈ 𝐽 → (𝐽 ∈ Fre → {(0g𝐺)} ∈ (Clsd‘𝐽)))
1511, 14syl 17 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g𝐺)} ∈ (Clsd‘𝐽)))
164, 7tgphaus 24146 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g𝐺)} ∈ (Clsd‘𝐽)))
1715, 16sylibrd 259 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus))
181, 17impbid2 226 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {csn 4648   cuni 4931  cfv 6573  Basecbs 17258  TopOpenctopn 17481  0gc0g 17499  Grpcgrp 18973  TopOnctopon 22937  Clsdccld 23045  Frect1 23336  Hauscha 23337  TopGrpctgp 24100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-0g 17501  df-topgen 17503  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cn 23256  df-t1 23343  df-haus 23344  df-tx 23591  df-tmd 24101  df-tgp 24102
This theorem is referenced by:  tgpt0  24148
  Copyright terms: Public domain W3C validator