MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpt1 Structured version   Visualization version   GIF version

Theorem tgpt1 24126
Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypothesis
Ref Expression
tgpt1.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgpt1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))

Proof of Theorem tgpt1
StepHypRef Expression
1 haust1 23360 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 tgpgrp 24086 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
3 eqid 2737 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2737 . . . . . . 7 (0g𝐺) = (0g𝐺)
53, 4grpidcl 18983 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
62, 5syl 17 . . . . 5 (𝐺 ∈ TopGrp → (0g𝐺) ∈ (Base‘𝐺))
7 tgpt1.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
87, 3tgptopon 24090 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
9 toponuni 22920 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
108, 9syl 17 . . . . 5 (𝐺 ∈ TopGrp → (Base‘𝐺) = 𝐽)
116, 10eleqtrd 2843 . . . 4 (𝐺 ∈ TopGrp → (0g𝐺) ∈ 𝐽)
12 eqid 2737 . . . . . 6 𝐽 = 𝐽
1312t1sncld 23334 . . . . 5 ((𝐽 ∈ Fre ∧ (0g𝐺) ∈ 𝐽) → {(0g𝐺)} ∈ (Clsd‘𝐽))
1413expcom 413 . . . 4 ((0g𝐺) ∈ 𝐽 → (𝐽 ∈ Fre → {(0g𝐺)} ∈ (Clsd‘𝐽)))
1511, 14syl 17 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g𝐺)} ∈ (Clsd‘𝐽)))
164, 7tgphaus 24125 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g𝐺)} ∈ (Clsd‘𝐽)))
1715, 16sylibrd 259 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus))
181, 17impbid2 226 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {csn 4626   cuni 4907  cfv 6561  Basecbs 17247  TopOpenctopn 17466  0gc0g 17484  Grpcgrp 18951  TopOnctopon 22916  Clsdccld 23024  Frect1 23315  Hauscha 23316  TopGrpctgp 24079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-0g 17486  df-topgen 17488  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-t1 23322  df-haus 23323  df-tx 23570  df-tmd 24080  df-tgp 24081
This theorem is referenced by:  tgpt0  24127
  Copyright terms: Public domain W3C validator