Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgpt1 | Structured version Visualization version GIF version |
Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
tgpt1.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
tgpt1 | ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 22608 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | tgpgrp 23334 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
3 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | eqid 2737 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | 3, 4 | grpidcl 18703 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ (Base‘𝐺)) |
7 | tgpt1.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
8 | 7, 3 | tgptopon 23338 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
9 | toponuni 22168 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (Base‘𝐺) = ∪ 𝐽) |
11 | 6, 10 | eleqtrd 2840 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ ∪ 𝐽) |
12 | eqid 2737 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
13 | 12 | t1sncld 22582 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ (0g‘𝐺) ∈ ∪ 𝐽) → {(0g‘𝐺)} ∈ (Clsd‘𝐽)) |
14 | 13 | expcom 415 | . . . 4 ⊢ ((0g‘𝐺) ∈ ∪ 𝐽 → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
15 | 11, 14 | syl 17 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
16 | 4, 7 | tgphaus 23373 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
17 | 15, 16 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
18 | 1, 17 | impbid2 225 | 1 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {csn 4577 ∪ cuni 4856 ‘cfv 6483 Basecbs 17009 TopOpenctopn 17229 0gc0g 17247 Grpcgrp 18673 TopOnctopon 22164 Clsdccld 22272 Frect1 22563 Hauscha 22564 TopGrpctgp 23327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-fo 6489 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7903 df-2nd 7904 df-map 8692 df-0g 17249 df-topgen 17251 df-plusf 18422 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-sbg 18678 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-cld 22275 df-cn 22483 df-t1 22570 df-haus 22571 df-tx 22818 df-tmd 23328 df-tgp 23329 |
This theorem is referenced by: tgpt0 23375 |
Copyright terms: Public domain | W3C validator |