| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpt1 | Structured version Visualization version GIF version | ||
| Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgpt1.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| Ref | Expression |
|---|---|
| tgpt1 | ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23237 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | tgpgrp 23963 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | 3, 4 | grpidcl 18844 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 7 | tgpt1.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 8 | 7, 3 | tgptopon 23967 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 9 | toponuni 22799 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (Base‘𝐺) = ∪ 𝐽) |
| 11 | 6, 10 | eleqtrd 2830 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ ∪ 𝐽) |
| 12 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | t1sncld 23211 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ (0g‘𝐺) ∈ ∪ 𝐽) → {(0g‘𝐺)} ∈ (Clsd‘𝐽)) |
| 14 | 13 | expcom 413 | . . . 4 ⊢ ((0g‘𝐺) ∈ ∪ 𝐽 → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 15 | 11, 14 | syl 17 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 16 | 4, 7 | tgphaus 24002 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
| 17 | 15, 16 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
| 18 | 1, 17 | impbid2 226 | 1 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4577 ∪ cuni 4858 ‘cfv 6482 Basecbs 17120 TopOpenctopn 17325 0gc0g 17343 Grpcgrp 18812 TopOnctopon 22795 Clsdccld 22901 Frect1 23192 Hauscha 23193 TopGrpctgp 23956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-0g 17345 df-topgen 17347 df-plusf 18513 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-cn 23112 df-t1 23199 df-haus 23200 df-tx 23447 df-tmd 23957 df-tgp 23958 |
| This theorem is referenced by: tgpt0 24004 |
| Copyright terms: Public domain | W3C validator |