![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpt1 | Structured version Visualization version GIF version |
Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
tgpt1.j | β’ π½ = (TopOpenβπΊ) |
Ref | Expression |
---|---|
tgpt1 | β’ (πΊ β TopGrp β (π½ β Haus β π½ β Fre)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 22855 | . 2 β’ (π½ β Haus β π½ β Fre) | |
2 | tgpgrp 23581 | . . . . . 6 β’ (πΊ β TopGrp β πΊ β Grp) | |
3 | eqid 2732 | . . . . . . 7 β’ (BaseβπΊ) = (BaseβπΊ) | |
4 | eqid 2732 | . . . . . . 7 β’ (0gβπΊ) = (0gβπΊ) | |
5 | 3, 4 | grpidcl 18849 | . . . . . 6 β’ (πΊ β Grp β (0gβπΊ) β (BaseβπΊ)) |
6 | 2, 5 | syl 17 | . . . . 5 β’ (πΊ β TopGrp β (0gβπΊ) β (BaseβπΊ)) |
7 | tgpt1.j | . . . . . . 7 β’ π½ = (TopOpenβπΊ) | |
8 | 7, 3 | tgptopon 23585 | . . . . . 6 β’ (πΊ β TopGrp β π½ β (TopOnβ(BaseβπΊ))) |
9 | toponuni 22415 | . . . . . 6 β’ (π½ β (TopOnβ(BaseβπΊ)) β (BaseβπΊ) = βͺ π½) | |
10 | 8, 9 | syl 17 | . . . . 5 β’ (πΊ β TopGrp β (BaseβπΊ) = βͺ π½) |
11 | 6, 10 | eleqtrd 2835 | . . . 4 β’ (πΊ β TopGrp β (0gβπΊ) β βͺ π½) |
12 | eqid 2732 | . . . . . 6 β’ βͺ π½ = βͺ π½ | |
13 | 12 | t1sncld 22829 | . . . . 5 β’ ((π½ β Fre β§ (0gβπΊ) β βͺ π½) β {(0gβπΊ)} β (Clsdβπ½)) |
14 | 13 | expcom 414 | . . . 4 β’ ((0gβπΊ) β βͺ π½ β (π½ β Fre β {(0gβπΊ)} β (Clsdβπ½))) |
15 | 11, 14 | syl 17 | . . 3 β’ (πΊ β TopGrp β (π½ β Fre β {(0gβπΊ)} β (Clsdβπ½))) |
16 | 4, 7 | tgphaus 23620 | . . 3 β’ (πΊ β TopGrp β (π½ β Haus β {(0gβπΊ)} β (Clsdβπ½))) |
17 | 15, 16 | sylibrd 258 | . 2 β’ (πΊ β TopGrp β (π½ β Fre β π½ β Haus)) |
18 | 1, 17 | impbid2 225 | 1 β’ (πΊ β TopGrp β (π½ β Haus β π½ β Fre)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 {csn 4628 βͺ cuni 4908 βcfv 6543 Basecbs 17143 TopOpenctopn 17366 0gc0g 17384 Grpcgrp 18818 TopOnctopon 22411 Clsdccld 22519 Frect1 22810 Hauscha 22811 TopGrpctgp 23574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-0g 17386 df-topgen 17388 df-plusf 18559 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-sbg 18823 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cld 22522 df-cn 22730 df-t1 22817 df-haus 22818 df-tx 23065 df-tmd 23575 df-tgp 23576 |
This theorem is referenced by: tgpt0 23622 |
Copyright terms: Public domain | W3C validator |