Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfinima Structured version   Visualization version   GIF version

Theorem sibfinima 34323
Description: The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfinima.g (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfinima.w (𝜑𝑊 ∈ TopSp)
sibfinima.j (𝜑𝐽 ∈ Fre)
Assertion
Ref Expression
sibfinima (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞))

Proof of Theorem sibfinima
StepHypRef Expression
1 sitgval.2 . . . . . . . 8 (𝜑𝑀 ran measures)
2 measbasedom 34185 . . . . . . . 8 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
31, 2sylib 218 . . . . . . 7 (𝜑𝑀 ∈ (measures‘dom 𝑀))
433ad2ant1 1133 . . . . . 6 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑀 ∈ (measures‘dom 𝑀))
5 dmmeas 34184 . . . . . . . . 9 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
61, 5syl 17 . . . . . . . 8 (𝜑 → dom 𝑀 ran sigAlgebra)
763ad2ant1 1133 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → dom 𝑀 ran sigAlgebra)
8 sitgval.s . . . . . . . . . 10 𝑆 = (sigaGen‘𝐽)
9 sibfinima.j . . . . . . . . . . 11 (𝜑𝐽 ∈ Fre)
109sgsiga 34125 . . . . . . . . . 10 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
118, 10eqeltrid 2832 . . . . . . . . 9 (𝜑𝑆 ran sigAlgebra)
12113ad2ant1 1133 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑆 ran sigAlgebra)
13 sitgval.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
14 sitgval.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑊)
15 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
16 sitgval.x . . . . . . . . . 10 · = ( ·𝑠𝑊)
17 sitgval.h . . . . . . . . . 10 𝐻 = (ℝHom‘(Scalar‘𝑊))
18 sitgval.1 . . . . . . . . . 10 (𝜑𝑊𝑉)
19 sibfmbl.1 . . . . . . . . . 10 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2013, 14, 8, 15, 16, 17, 18, 1, 19sibfmbl 34319 . . . . . . . . 9 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
21203ad2ant1 1133 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
22 sibfinima.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ TopSp)
2314tpstop 22857 . . . . . . . . . . . 12 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
24 cldssbrsiga 34170 . . . . . . . . . . . 12 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
2625, 8sseqtrrdi 3985 . . . . . . . . . 10 (𝜑 → (Clsd‘𝐽) ⊆ 𝑆)
27263ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (Clsd‘𝐽) ⊆ 𝑆)
2893ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐽 ∈ Fre)
2913, 14, 8, 15, 16, 17, 18, 1, 19sibff 34320 . . . . . . . . . . . . 13 (𝜑𝐹: dom 𝑀 𝐽)
3029frnd 6678 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 𝐽)
31303ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ran 𝐹 𝐽)
32 simp2 1137 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑋 ∈ ran 𝐹)
3331, 32sseldd 3944 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑋 𝐽)
34 eqid 2729 . . . . . . . . . . 11 𝐽 = 𝐽
3534t1sncld 23246 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑋 𝐽) → {𝑋} ∈ (Clsd‘𝐽))
3628, 33, 35syl2anc 584 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑋} ∈ (Clsd‘𝐽))
3727, 36sseldd 3944 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑋} ∈ 𝑆)
387, 12, 21, 37mbfmcnvima 34239 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝐹 “ {𝑋}) ∈ dom 𝑀)
39 sibfinima.g . . . . . . . . . 10 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
4013, 14, 8, 15, 16, 17, 18, 1, 39sibfmbl 34319 . . . . . . . . 9 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
41403ad2ant1 1133 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
4213, 14, 8, 15, 16, 17, 18, 1, 39sibff 34320 . . . . . . . . . . . . 13 (𝜑𝐺: dom 𝑀 𝐽)
4342frnd 6678 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 𝐽)
44433ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ran 𝐺 𝐽)
45 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑌 ∈ ran 𝐺)
4644, 45sseldd 3944 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑌 𝐽)
4734t1sncld 23246 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑌 𝐽) → {𝑌} ∈ (Clsd‘𝐽))
4828, 46, 47syl2anc 584 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑌} ∈ (Clsd‘𝐽))
4927, 48sseldd 3944 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑌} ∈ 𝑆)
507, 12, 41, 49mbfmcnvima 34239 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝐺 “ {𝑌}) ∈ dom 𝑀)
51 inelsiga 34118 . . . . . . 7 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {𝑋}) ∈ dom 𝑀 ∧ (𝐺 “ {𝑌}) ∈ dom 𝑀) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
527, 38, 50, 51syl3anc 1373 . . . . . 6 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
53 measvxrge0 34188 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞))
544, 52, 53syl2anc 584 . . . . 5 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞))
55 elxrge0 13394 . . . . . 6 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})))))
5655simplbi 497 . . . . 5 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
5754, 56syl 17 . . . 4 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
5857adantr 480 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
59 0re 11152 . . . 4 0 ∈ ℝ
6059a1i 11 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → 0 ∈ ℝ)
6155simprbi 496 . . . . 5 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6254, 61syl 17 . . . 4 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6362adantr 480 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6457adantr 480 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
654adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝑀 ∈ (measures‘dom 𝑀))
6638adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝐹 “ {𝑋}) ∈ dom 𝑀)
67 measvxrge0 34188 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ (𝐹 “ {𝑋}) ∈ dom 𝑀) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞))
6865, 66, 67syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞))
69 elxrge0 13394 . . . . . . 7 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋}))))
7069simplbi 497 . . . . . 6 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞) → (𝑀‘(𝐹 “ {𝑋})) ∈ ℝ*)
7168, 70syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ ℝ*)
72 pnfxr 11204 . . . . . 6 +∞ ∈ ℝ*
7372a1i 11 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → +∞ ∈ ℝ*)
7452adantr 480 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
75 inss1 4196 . . . . . . 7 ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐹 “ {𝑋})
7675a1i 11 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐹 “ {𝑋}))
7765, 74, 66, 76measssd 34198 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ≤ (𝑀‘(𝐹 “ {𝑋})))
78 simpl1 1192 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝜑)
7932anim1i 615 . . . . . . . 8 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑋 ∈ ran 𝐹𝑋0 ))
80 eldifsn 4746 . . . . . . . 8 (𝑋 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑋 ∈ ran 𝐹𝑋0 ))
8179, 80sylibr 234 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝑋 ∈ (ran 𝐹 ∖ { 0 }))
8213, 14, 8, 15, 16, 17, 18, 1, 19sibfima 34322 . . . . . . 7 ((𝜑𝑋 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞))
8378, 81, 82syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞))
84 elico2 13347 . . . . . . . 8 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋})) ∧ (𝑀‘(𝐹 “ {𝑋})) < +∞)))
8559, 72, 84mp2an 692 . . . . . . 7 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋})) ∧ (𝑀‘(𝐹 “ {𝑋})) < +∞))
8685simp3bi 1147 . . . . . 6 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) → (𝑀‘(𝐹 “ {𝑋})) < +∞)
8783, 86syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) < +∞)
8864, 71, 73, 77, 87xrlelttrd 13096 . . . 4 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
8957adantr 480 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
904adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝑀 ∈ (measures‘dom 𝑀))
9150adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝐺 “ {𝑌}) ∈ dom 𝑀)
92 measvxrge0 34188 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ (𝐺 “ {𝑌}) ∈ dom 𝑀) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞))
9390, 91, 92syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞))
94 elxrge0 13394 . . . . . . 7 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌}))))
9594simplbi 497 . . . . . 6 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞) → (𝑀‘(𝐺 “ {𝑌})) ∈ ℝ*)
9693, 95syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ ℝ*)
9772a1i 11 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → +∞ ∈ ℝ*)
9852adantr 480 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
99 inss2 4197 . . . . . . 7 ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐺 “ {𝑌})
10099a1i 11 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐺 “ {𝑌}))
10190, 98, 91, 100measssd 34198 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ≤ (𝑀‘(𝐺 “ {𝑌})))
102 simpl1 1192 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝜑)
10345anim1i 615 . . . . . . . 8 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑌 ∈ ran 𝐺𝑌0 ))
104 eldifsn 4746 . . . . . . . 8 (𝑌 ∈ (ran 𝐺 ∖ { 0 }) ↔ (𝑌 ∈ ran 𝐺𝑌0 ))
105103, 104sylibr 234 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝑌 ∈ (ran 𝐺 ∖ { 0 }))
10613, 14, 8, 15, 16, 17, 18, 1, 39sibfima 34322 . . . . . . 7 ((𝜑𝑌 ∈ (ran 𝐺 ∖ { 0 })) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞))
107102, 105, 106syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞))
108 elico2 13347 . . . . . . . 8 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌})) ∧ (𝑀‘(𝐺 “ {𝑌})) < +∞)))
10959, 72, 108mp2an 692 . . . . . . 7 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌})) ∧ (𝑀‘(𝐺 “ {𝑌})) < +∞))
110109simp3bi 1147 . . . . . 6 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) → (𝑀‘(𝐺 “ {𝑌})) < +∞)
111107, 110syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) < +∞)
11289, 96, 97, 101, 111xrlelttrd 13096 . . . 4 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
11388, 112jaodan 959 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
114 xrre3 13107 . . 3 ((((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ∈ ℝ) ∧ (0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ)
11558, 60, 63, 113, 114syl22anc 838 . 2 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ)
116 elico2 13347 . . 3 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)))
11759, 72, 116mp2an 692 . 2 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞))
118115, 63, 113, 117syl3anbrc 1344 1 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cin 3910  wss 3911  {csn 4585   cuni 4867   class class class wbr 5102  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  [,)cico 13284  [,]cicc 13285  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  TopOpenctopn 17360  0gc0g 17378  Topctop 22813  TopSpctps 22852  Clsdccld 22936  Frect1 23227  ℝHomcrrh 33976  sigAlgebracsiga 34091  sigaGencsigagen 34121  measurescmeas 34178  MblFnMcmbfm 34232  sitgcsitg 34313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-ordt 17440  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18507  df-tsr 18508  df-plusf 18548  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-abv 20729  df-lmod 20800  df-scaf 20801  df-sra 21112  df-rgmod 21113  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-t1 23234  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-tmd 23992  df-tgp 23993  df-tsms 24047  df-trg 24080  df-xms 24241  df-ms 24242  df-tms 24243  df-nm 24503  df-ngp 24504  df-nrg 24506  df-nlm 24507  df-ii 24803  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-esum 34011  df-siga 34092  df-sigagen 34122  df-meas 34179  df-mbfm 34233  df-sitg 34314
This theorem is referenced by:  sibfof  34324  sitgaddlemb  34332
  Copyright terms: Public domain W3C validator