Proof of Theorem sibfinima
Step | Hyp | Ref
| Expression |
1 | | sitgval.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) |
2 | | measbasedom 31701 |
. . . . . . . 8
⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
3 | 1, 2 | sylib 221 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (measures‘dom 𝑀)) |
4 | 3 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑀 ∈ (measures‘dom 𝑀)) |
5 | | dmmeas 31700 |
. . . . . . . . 9
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
6 | 1, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
7 | 6 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
8 | | sitgval.s |
. . . . . . . . . 10
⊢ 𝑆 = (sigaGen‘𝐽) |
9 | | sibfinima.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ Fre) |
10 | 9 | sgsiga 31641 |
. . . . . . . . . 10
⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
11 | 8, 10 | eqeltrid 2856 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ∪ ran
sigAlgebra) |
12 | 11 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑆 ∈ ∪ ran
sigAlgebra) |
13 | | sitgval.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑊) |
14 | | sitgval.j |
. . . . . . . . . 10
⊢ 𝐽 = (TopOpen‘𝑊) |
15 | | sitgval.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑊) |
16 | | sitgval.x |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑊) |
17 | | sitgval.h |
. . . . . . . . . 10
⊢ 𝐻 =
(ℝHom‘(Scalar‘𝑊)) |
18 | | sitgval.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
19 | | sibfmbl.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
20 | 13, 14, 8, 15, 16, 17, 18, 1, 19 | sibfmbl 31833 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
21 | 20 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
22 | | sibfinima.w |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ TopSp) |
23 | 14 | tpstop 21650 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ TopSp → 𝐽 ∈ Top) |
24 | | cldssbrsiga 31686 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top →
(Clsd‘𝐽) ⊆
(sigaGen‘𝐽)) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
26 | 25, 8 | sseqtrrdi 3945 |
. . . . . . . . . 10
⊢ (𝜑 → (Clsd‘𝐽) ⊆ 𝑆) |
27 | 26 | 3ad2ant1 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (Clsd‘𝐽) ⊆ 𝑆) |
28 | 9 | 3ad2ant1 1130 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝐽 ∈ Fre) |
29 | 13, 14, 8, 15, 16, 17, 18, 1, 19 | sibff 31834 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
30 | 29 | frnd 6510 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐽) |
31 | 30 | 3ad2ant1 1130 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → ran 𝐹 ⊆ ∪ 𝐽) |
32 | | simp2 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑋 ∈ ran 𝐹) |
33 | 31, 32 | sseldd 3895 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑋 ∈ ∪ 𝐽) |
34 | | eqid 2758 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
35 | 34 | t1sncld 22039 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Fre ∧ 𝑋 ∈ ∪ 𝐽)
→ {𝑋} ∈
(Clsd‘𝐽)) |
36 | 28, 33, 35 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → {𝑋} ∈ (Clsd‘𝐽)) |
37 | 27, 36 | sseldd 3895 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → {𝑋} ∈ 𝑆) |
38 | 7, 12, 21, 37 | mbfmcnvima 31755 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (◡𝐹 “ {𝑋}) ∈ dom 𝑀) |
39 | | sibfinima.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
40 | 13, 14, 8, 15, 16, 17, 18, 1, 39 | sibfmbl 31833 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) |
41 | 40 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) |
42 | 13, 14, 8, 15, 16, 17, 18, 1, 39 | sibff 31834 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:∪ dom 𝑀⟶∪ 𝐽) |
43 | 42 | frnd 6510 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐺 ⊆ ∪ 𝐽) |
44 | 43 | 3ad2ant1 1130 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → ran 𝐺 ⊆ ∪ 𝐽) |
45 | | simp3 1135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑌 ∈ ran 𝐺) |
46 | 44, 45 | sseldd 3895 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑌 ∈ ∪ 𝐽) |
47 | 34 | t1sncld 22039 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Fre ∧ 𝑌 ∈ ∪ 𝐽)
→ {𝑌} ∈
(Clsd‘𝐽)) |
48 | 28, 46, 47 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → {𝑌} ∈ (Clsd‘𝐽)) |
49 | 27, 48 | sseldd 3895 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → {𝑌} ∈ 𝑆) |
50 | 7, 12, 41, 49 | mbfmcnvima 31755 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (◡𝐺 “ {𝑌}) ∈ dom 𝑀) |
51 | | inelsiga 31634 |
. . . . . . 7
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ (◡𝐹 “ {𝑋}) ∈ dom 𝑀 ∧ (◡𝐺 “ {𝑌}) ∈ dom 𝑀) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) |
52 | 7, 38, 50, 51 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) |
53 | | measvxrge0 31704 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞)) |
54 | 4, 52, 53 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞)) |
55 | | elxrge0 12902 |
. . . . . 6
⊢ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞) ↔ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ≤
(𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))))) |
56 | 55 | simplbi 501 |
. . . . 5
⊢ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
57 | 54, 56 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
58 | 57 | adantr 484 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
59 | | 0re 10694 |
. . . 4
⊢ 0 ∈
ℝ |
60 | 59 | a1i 11 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → 0 ∈
ℝ) |
61 | 55 | simprbi 500 |
. . . . 5
⊢ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞) → 0 ≤
(𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})))) |
62 | 54, 61 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})))) |
63 | 62 | adantr 484 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → 0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})))) |
64 | 57 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
65 | 4 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → 𝑀 ∈ (measures‘dom 𝑀)) |
66 | 38 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (◡𝐹 “ {𝑋}) ∈ dom 𝑀) |
67 | | measvxrge0 31704 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ (◡𝐹 “ {𝑋}) ∈ dom 𝑀) → (𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,]+∞)) |
68 | 65, 66, 67 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,]+∞)) |
69 | | elxrge0 12902 |
. . . . . . 7
⊢ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,]+∞) ↔ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ ℝ* ∧ 0 ≤
(𝑀‘(◡𝐹 “ {𝑋})))) |
70 | 69 | simplbi 501 |
. . . . . 6
⊢ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,]+∞) → (𝑀‘(◡𝐹 “ {𝑋})) ∈
ℝ*) |
71 | 68, 70 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘(◡𝐹 “ {𝑋})) ∈
ℝ*) |
72 | | pnfxr 10746 |
. . . . . 6
⊢ +∞
∈ ℝ* |
73 | 72 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → +∞ ∈
ℝ*) |
74 | 52 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) |
75 | | inss1 4135 |
. . . . . . 7
⊢ ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ⊆ (◡𝐹 “ {𝑋}) |
76 | 75 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ⊆ (◡𝐹 “ {𝑋})) |
77 | 65, 74, 66, 76 | measssd 31714 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ≤ (𝑀‘(◡𝐹 “ {𝑋}))) |
78 | | simpl1 1188 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → 𝜑) |
79 | 32 | anim1i 617 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑋 ∈ ran 𝐹 ∧ 𝑋 ≠ 0 )) |
80 | | eldifsn 4680 |
. . . . . . . 8
⊢ (𝑋 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑋 ∈ ran 𝐹 ∧ 𝑋 ≠ 0 )) |
81 | 79, 80 | sylibr 237 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (ran 𝐹 ∖ { 0 })) |
82 | 13, 14, 8, 15, 16, 17, 18, 1, 19 | sibfima 31836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞)) |
83 | 78, 81, 82 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞)) |
84 | | elico2 12856 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡𝐹 “ {𝑋})) ∧ (𝑀‘(◡𝐹 “ {𝑋})) < +∞))) |
85 | 59, 72, 84 | mp2an 691 |
. . . . . . 7
⊢ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡𝐹 “ {𝑋})) ∧ (𝑀‘(◡𝐹 “ {𝑋})) < +∞)) |
86 | 85 | simp3bi 1144 |
. . . . . 6
⊢ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞) → (𝑀‘(◡𝐹 “ {𝑋})) < +∞) |
87 | 83, 86 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘(◡𝐹 “ {𝑋})) < +∞) |
88 | 64, 71, 73, 77, 87 | xrlelttrd 12607 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞) |
89 | 57 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
90 | 4 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → 𝑀 ∈ (measures‘dom 𝑀)) |
91 | 50 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (◡𝐺 “ {𝑌}) ∈ dom 𝑀) |
92 | | measvxrge0 31704 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ (◡𝐺 “ {𝑌}) ∈ dom 𝑀) → (𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,]+∞)) |
93 | 90, 91, 92 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,]+∞)) |
94 | | elxrge0 12902 |
. . . . . . 7
⊢ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,]+∞) ↔ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ ℝ* ∧ 0 ≤
(𝑀‘(◡𝐺 “ {𝑌})))) |
95 | 94 | simplbi 501 |
. . . . . 6
⊢ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,]+∞) → (𝑀‘(◡𝐺 “ {𝑌})) ∈
ℝ*) |
96 | 93, 95 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘(◡𝐺 “ {𝑌})) ∈
ℝ*) |
97 | 72 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → +∞ ∈
ℝ*) |
98 | 52 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) |
99 | | inss2 4136 |
. . . . . . 7
⊢ ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ⊆ (◡𝐺 “ {𝑌}) |
100 | 99 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ⊆ (◡𝐺 “ {𝑌})) |
101 | 90, 98, 91, 100 | measssd 31714 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ≤ (𝑀‘(◡𝐺 “ {𝑌}))) |
102 | | simpl1 1188 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → 𝜑) |
103 | 45 | anim1i 617 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑌 ∈ ran 𝐺 ∧ 𝑌 ≠ 0 )) |
104 | | eldifsn 4680 |
. . . . . . . 8
⊢ (𝑌 ∈ (ran 𝐺 ∖ { 0 }) ↔ (𝑌 ∈ ran 𝐺 ∧ 𝑌 ≠ 0 )) |
105 | 103, 104 | sylibr 237 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → 𝑌 ∈ (ran 𝐺 ∖ { 0 })) |
106 | 13, 14, 8, 15, 16, 17, 18, 1, 39 | sibfima 31836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 ∈ (ran 𝐺 ∖ { 0 })) → (𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞)) |
107 | 102, 105,
106 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞)) |
108 | | elico2 12856 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡𝐺 “ {𝑌})) ∧ (𝑀‘(◡𝐺 “ {𝑌})) < +∞))) |
109 | 59, 72, 108 | mp2an 691 |
. . . . . . 7
⊢ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡𝐺 “ {𝑌})) ∧ (𝑀‘(◡𝐺 “ {𝑌})) < +∞)) |
110 | 109 | simp3bi 1144 |
. . . . . 6
⊢ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞) → (𝑀‘(◡𝐺 “ {𝑌})) < +∞) |
111 | 107, 110 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘(◡𝐺 “ {𝑌})) < +∞) |
112 | 89, 96, 97, 101, 111 | xrlelttrd 12607 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞) |
113 | 88, 112 | jaodan 955 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞) |
114 | | xrre3 12618 |
. . 3
⊢ ((((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0
∈ ℝ) ∧ (0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∧ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞)) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ) |
115 | 58, 60, 63, 113, 114 | syl22anc 837 |
. 2
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ) |
116 | | elico2 12856 |
. . 3
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∧ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞))) |
117 | 59, 72, 116 | mp2an 691 |
. 2
⊢ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∧ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞)) |
118 | 115, 63, 113, 117 | syl3anbrc 1340 |
1
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,)+∞)) |