Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfinima Structured version   Visualization version   GIF version

Theorem sibfinima 32306
Description: The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfinima.g (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfinima.w (𝜑𝑊 ∈ TopSp)
sibfinima.j (𝜑𝐽 ∈ Fre)
Assertion
Ref Expression
sibfinima (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞))

Proof of Theorem sibfinima
StepHypRef Expression
1 sitgval.2 . . . . . . . 8 (𝜑𝑀 ran measures)
2 measbasedom 32170 . . . . . . . 8 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
31, 2sylib 217 . . . . . . 7 (𝜑𝑀 ∈ (measures‘dom 𝑀))
433ad2ant1 1132 . . . . . 6 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑀 ∈ (measures‘dom 𝑀))
5 dmmeas 32169 . . . . . . . . 9 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
61, 5syl 17 . . . . . . . 8 (𝜑 → dom 𝑀 ran sigAlgebra)
763ad2ant1 1132 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → dom 𝑀 ran sigAlgebra)
8 sitgval.s . . . . . . . . . 10 𝑆 = (sigaGen‘𝐽)
9 sibfinima.j . . . . . . . . . . 11 (𝜑𝐽 ∈ Fre)
109sgsiga 32110 . . . . . . . . . 10 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
118, 10eqeltrid 2843 . . . . . . . . 9 (𝜑𝑆 ran sigAlgebra)
12113ad2ant1 1132 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑆 ran sigAlgebra)
13 sitgval.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
14 sitgval.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑊)
15 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
16 sitgval.x . . . . . . . . . 10 · = ( ·𝑠𝑊)
17 sitgval.h . . . . . . . . . 10 𝐻 = (ℝHom‘(Scalar‘𝑊))
18 sitgval.1 . . . . . . . . . 10 (𝜑𝑊𝑉)
19 sibfmbl.1 . . . . . . . . . 10 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2013, 14, 8, 15, 16, 17, 18, 1, 19sibfmbl 32302 . . . . . . . . 9 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
21203ad2ant1 1132 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
22 sibfinima.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ TopSp)
2314tpstop 22086 . . . . . . . . . . . 12 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
24 cldssbrsiga 32155 . . . . . . . . . . . 12 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
2625, 8sseqtrrdi 3972 . . . . . . . . . 10 (𝜑 → (Clsd‘𝐽) ⊆ 𝑆)
27263ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (Clsd‘𝐽) ⊆ 𝑆)
2893ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐽 ∈ Fre)
2913, 14, 8, 15, 16, 17, 18, 1, 19sibff 32303 . . . . . . . . . . . . 13 (𝜑𝐹: dom 𝑀 𝐽)
3029frnd 6608 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 𝐽)
31303ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ran 𝐹 𝐽)
32 simp2 1136 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑋 ∈ ran 𝐹)
3331, 32sseldd 3922 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑋 𝐽)
34 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
3534t1sncld 22477 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑋 𝐽) → {𝑋} ∈ (Clsd‘𝐽))
3628, 33, 35syl2anc 584 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑋} ∈ (Clsd‘𝐽))
3727, 36sseldd 3922 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑋} ∈ 𝑆)
387, 12, 21, 37mbfmcnvima 32224 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝐹 “ {𝑋}) ∈ dom 𝑀)
39 sibfinima.g . . . . . . . . . 10 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
4013, 14, 8, 15, 16, 17, 18, 1, 39sibfmbl 32302 . . . . . . . . 9 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
41403ad2ant1 1132 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
4213, 14, 8, 15, 16, 17, 18, 1, 39sibff 32303 . . . . . . . . . . . . 13 (𝜑𝐺: dom 𝑀 𝐽)
4342frnd 6608 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 𝐽)
44433ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ran 𝐺 𝐽)
45 simp3 1137 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑌 ∈ ran 𝐺)
4644, 45sseldd 3922 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑌 𝐽)
4734t1sncld 22477 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑌 𝐽) → {𝑌} ∈ (Clsd‘𝐽))
4828, 46, 47syl2anc 584 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑌} ∈ (Clsd‘𝐽))
4927, 48sseldd 3922 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑌} ∈ 𝑆)
507, 12, 41, 49mbfmcnvima 32224 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝐺 “ {𝑌}) ∈ dom 𝑀)
51 inelsiga 32103 . . . . . . 7 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {𝑋}) ∈ dom 𝑀 ∧ (𝐺 “ {𝑌}) ∈ dom 𝑀) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
527, 38, 50, 51syl3anc 1370 . . . . . 6 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
53 measvxrge0 32173 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞))
544, 52, 53syl2anc 584 . . . . 5 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞))
55 elxrge0 13189 . . . . . 6 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})))))
5655simplbi 498 . . . . 5 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
5754, 56syl 17 . . . 4 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
5857adantr 481 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
59 0re 10977 . . . 4 0 ∈ ℝ
6059a1i 11 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → 0 ∈ ℝ)
6155simprbi 497 . . . . 5 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6254, 61syl 17 . . . 4 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6362adantr 481 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6457adantr 481 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
654adantr 481 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝑀 ∈ (measures‘dom 𝑀))
6638adantr 481 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝐹 “ {𝑋}) ∈ dom 𝑀)
67 measvxrge0 32173 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ (𝐹 “ {𝑋}) ∈ dom 𝑀) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞))
6865, 66, 67syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞))
69 elxrge0 13189 . . . . . . 7 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋}))))
7069simplbi 498 . . . . . 6 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞) → (𝑀‘(𝐹 “ {𝑋})) ∈ ℝ*)
7168, 70syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ ℝ*)
72 pnfxr 11029 . . . . . 6 +∞ ∈ ℝ*
7372a1i 11 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → +∞ ∈ ℝ*)
7452adantr 481 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
75 inss1 4162 . . . . . . 7 ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐹 “ {𝑋})
7675a1i 11 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐹 “ {𝑋}))
7765, 74, 66, 76measssd 32183 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ≤ (𝑀‘(𝐹 “ {𝑋})))
78 simpl1 1190 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝜑)
7932anim1i 615 . . . . . . . 8 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑋 ∈ ran 𝐹𝑋0 ))
80 eldifsn 4720 . . . . . . . 8 (𝑋 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑋 ∈ ran 𝐹𝑋0 ))
8179, 80sylibr 233 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝑋 ∈ (ran 𝐹 ∖ { 0 }))
8213, 14, 8, 15, 16, 17, 18, 1, 19sibfima 32305 . . . . . . 7 ((𝜑𝑋 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞))
8378, 81, 82syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞))
84 elico2 13143 . . . . . . . 8 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋})) ∧ (𝑀‘(𝐹 “ {𝑋})) < +∞)))
8559, 72, 84mp2an 689 . . . . . . 7 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋})) ∧ (𝑀‘(𝐹 “ {𝑋})) < +∞))
8685simp3bi 1146 . . . . . 6 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) → (𝑀‘(𝐹 “ {𝑋})) < +∞)
8783, 86syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) < +∞)
8864, 71, 73, 77, 87xrlelttrd 12894 . . . 4 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
8957adantr 481 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
904adantr 481 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝑀 ∈ (measures‘dom 𝑀))
9150adantr 481 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝐺 “ {𝑌}) ∈ dom 𝑀)
92 measvxrge0 32173 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ (𝐺 “ {𝑌}) ∈ dom 𝑀) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞))
9390, 91, 92syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞))
94 elxrge0 13189 . . . . . . 7 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌}))))
9594simplbi 498 . . . . . 6 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞) → (𝑀‘(𝐺 “ {𝑌})) ∈ ℝ*)
9693, 95syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ ℝ*)
9772a1i 11 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → +∞ ∈ ℝ*)
9852adantr 481 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
99 inss2 4163 . . . . . . 7 ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐺 “ {𝑌})
10099a1i 11 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐺 “ {𝑌}))
10190, 98, 91, 100measssd 32183 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ≤ (𝑀‘(𝐺 “ {𝑌})))
102 simpl1 1190 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝜑)
10345anim1i 615 . . . . . . . 8 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑌 ∈ ran 𝐺𝑌0 ))
104 eldifsn 4720 . . . . . . . 8 (𝑌 ∈ (ran 𝐺 ∖ { 0 }) ↔ (𝑌 ∈ ran 𝐺𝑌0 ))
105103, 104sylibr 233 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝑌 ∈ (ran 𝐺 ∖ { 0 }))
10613, 14, 8, 15, 16, 17, 18, 1, 39sibfima 32305 . . . . . . 7 ((𝜑𝑌 ∈ (ran 𝐺 ∖ { 0 })) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞))
107102, 105, 106syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞))
108 elico2 13143 . . . . . . . 8 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌})) ∧ (𝑀‘(𝐺 “ {𝑌})) < +∞)))
10959, 72, 108mp2an 689 . . . . . . 7 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌})) ∧ (𝑀‘(𝐺 “ {𝑌})) < +∞))
110109simp3bi 1146 . . . . . 6 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) → (𝑀‘(𝐺 “ {𝑌})) < +∞)
111107, 110syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) < +∞)
11289, 96, 97, 101, 111xrlelttrd 12894 . . . 4 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
11388, 112jaodan 955 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
114 xrre3 12905 . . 3 ((((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ∈ ℝ) ∧ (0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ)
11558, 60, 63, 113, 114syl22anc 836 . 2 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ)
116 elico2 13143 . . 3 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)))
11759, 72, 116mp2an 689 . 2 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞))
118115, 63, 113, 117syl3anbrc 1342 1 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cdif 3884  cin 3886  wss 3887  {csn 4561   cuni 4839   class class class wbr 5074  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  [,]cicc 13082  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  TopOpenctopn 17132  0gc0g 17150  Topctop 22042  TopSpctps 22081  Clsdccld 22167  Frect1 22458  ℝHomcrrh 31943  sigAlgebracsiga 32076  sigaGencsigagen 32106  measurescmeas 32163  MblFnMcmbfm 32217  sitgcsitg 32296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-ordt 17212  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-ps 18284  df-tsr 18285  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-abv 20077  df-lmod 20125  df-scaf 20126  df-sra 20434  df-rgmod 20435  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-tmd 23223  df-tgp 23224  df-tsms 23278  df-trg 23311  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-nrg 23741  df-nlm 23742  df-ii 24040  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-esum 31996  df-siga 32077  df-sigagen 32107  df-meas 32164  df-mbfm 32218  df-sitg 32297
This theorem is referenced by:  sibfof  32307  sitgaddlemb  32315
  Copyright terms: Public domain W3C validator