Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfinima Structured version   Visualization version   GIF version

Theorem sibfinima 34313
Description: The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfinima.g (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfinima.w (𝜑𝑊 ∈ TopSp)
sibfinima.j (𝜑𝐽 ∈ Fre)
Assertion
Ref Expression
sibfinima (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞))

Proof of Theorem sibfinima
StepHypRef Expression
1 sitgval.2 . . . . . . . 8 (𝜑𝑀 ran measures)
2 measbasedom 34175 . . . . . . . 8 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
31, 2sylib 218 . . . . . . 7 (𝜑𝑀 ∈ (measures‘dom 𝑀))
433ad2ant1 1133 . . . . . 6 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑀 ∈ (measures‘dom 𝑀))
5 dmmeas 34174 . . . . . . . . 9 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
61, 5syl 17 . . . . . . . 8 (𝜑 → dom 𝑀 ran sigAlgebra)
763ad2ant1 1133 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → dom 𝑀 ran sigAlgebra)
8 sitgval.s . . . . . . . . . 10 𝑆 = (sigaGen‘𝐽)
9 sibfinima.j . . . . . . . . . . 11 (𝜑𝐽 ∈ Fre)
109sgsiga 34115 . . . . . . . . . 10 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
118, 10eqeltrid 2832 . . . . . . . . 9 (𝜑𝑆 ran sigAlgebra)
12113ad2ant1 1133 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑆 ran sigAlgebra)
13 sitgval.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
14 sitgval.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑊)
15 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
16 sitgval.x . . . . . . . . . 10 · = ( ·𝑠𝑊)
17 sitgval.h . . . . . . . . . 10 𝐻 = (ℝHom‘(Scalar‘𝑊))
18 sitgval.1 . . . . . . . . . 10 (𝜑𝑊𝑉)
19 sibfmbl.1 . . . . . . . . . 10 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2013, 14, 8, 15, 16, 17, 18, 1, 19sibfmbl 34309 . . . . . . . . 9 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
21203ad2ant1 1133 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
22 sibfinima.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ TopSp)
2314tpstop 22822 . . . . . . . . . . . 12 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
24 cldssbrsiga 34160 . . . . . . . . . . . 12 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
2625, 8sseqtrrdi 3977 . . . . . . . . . 10 (𝜑 → (Clsd‘𝐽) ⊆ 𝑆)
27263ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (Clsd‘𝐽) ⊆ 𝑆)
2893ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐽 ∈ Fre)
2913, 14, 8, 15, 16, 17, 18, 1, 19sibff 34310 . . . . . . . . . . . . 13 (𝜑𝐹: dom 𝑀 𝐽)
3029frnd 6660 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 𝐽)
31303ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ran 𝐹 𝐽)
32 simp2 1137 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑋 ∈ ran 𝐹)
3331, 32sseldd 3936 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑋 𝐽)
34 eqid 2729 . . . . . . . . . . 11 𝐽 = 𝐽
3534t1sncld 23211 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑋 𝐽) → {𝑋} ∈ (Clsd‘𝐽))
3628, 33, 35syl2anc 584 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑋} ∈ (Clsd‘𝐽))
3727, 36sseldd 3936 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑋} ∈ 𝑆)
387, 12, 21, 37mbfmcnvima 34229 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝐹 “ {𝑋}) ∈ dom 𝑀)
39 sibfinima.g . . . . . . . . . 10 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
4013, 14, 8, 15, 16, 17, 18, 1, 39sibfmbl 34309 . . . . . . . . 9 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
41403ad2ant1 1133 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
4213, 14, 8, 15, 16, 17, 18, 1, 39sibff 34310 . . . . . . . . . . . . 13 (𝜑𝐺: dom 𝑀 𝐽)
4342frnd 6660 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 𝐽)
44433ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ran 𝐺 𝐽)
45 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑌 ∈ ran 𝐺)
4644, 45sseldd 3936 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑌 𝐽)
4734t1sncld 23211 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑌 𝐽) → {𝑌} ∈ (Clsd‘𝐽))
4828, 46, 47syl2anc 584 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑌} ∈ (Clsd‘𝐽))
4927, 48sseldd 3936 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑌} ∈ 𝑆)
507, 12, 41, 49mbfmcnvima 34229 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝐺 “ {𝑌}) ∈ dom 𝑀)
51 inelsiga 34108 . . . . . . 7 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {𝑋}) ∈ dom 𝑀 ∧ (𝐺 “ {𝑌}) ∈ dom 𝑀) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
527, 38, 50, 51syl3anc 1373 . . . . . 6 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
53 measvxrge0 34178 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞))
544, 52, 53syl2anc 584 . . . . 5 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞))
55 elxrge0 13360 . . . . . 6 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})))))
5655simplbi 497 . . . . 5 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
5754, 56syl 17 . . . 4 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
5857adantr 480 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
59 0re 11117 . . . 4 0 ∈ ℝ
6059a1i 11 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → 0 ∈ ℝ)
6155simprbi 496 . . . . 5 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6254, 61syl 17 . . . 4 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6362adantr 480 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6457adantr 480 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
654adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝑀 ∈ (measures‘dom 𝑀))
6638adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝐹 “ {𝑋}) ∈ dom 𝑀)
67 measvxrge0 34178 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ (𝐹 “ {𝑋}) ∈ dom 𝑀) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞))
6865, 66, 67syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞))
69 elxrge0 13360 . . . . . . 7 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋}))))
7069simplbi 497 . . . . . 6 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞) → (𝑀‘(𝐹 “ {𝑋})) ∈ ℝ*)
7168, 70syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ ℝ*)
72 pnfxr 11169 . . . . . 6 +∞ ∈ ℝ*
7372a1i 11 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → +∞ ∈ ℝ*)
7452adantr 480 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
75 inss1 4188 . . . . . . 7 ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐹 “ {𝑋})
7675a1i 11 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐹 “ {𝑋}))
7765, 74, 66, 76measssd 34188 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ≤ (𝑀‘(𝐹 “ {𝑋})))
78 simpl1 1192 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝜑)
7932anim1i 615 . . . . . . . 8 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑋 ∈ ran 𝐹𝑋0 ))
80 eldifsn 4737 . . . . . . . 8 (𝑋 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑋 ∈ ran 𝐹𝑋0 ))
8179, 80sylibr 234 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝑋 ∈ (ran 𝐹 ∖ { 0 }))
8213, 14, 8, 15, 16, 17, 18, 1, 19sibfima 34312 . . . . . . 7 ((𝜑𝑋 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞))
8378, 81, 82syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞))
84 elico2 13313 . . . . . . . 8 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋})) ∧ (𝑀‘(𝐹 “ {𝑋})) < +∞)))
8559, 72, 84mp2an 692 . . . . . . 7 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋})) ∧ (𝑀‘(𝐹 “ {𝑋})) < +∞))
8685simp3bi 1147 . . . . . 6 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) → (𝑀‘(𝐹 “ {𝑋})) < +∞)
8783, 86syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) < +∞)
8864, 71, 73, 77, 87xrlelttrd 13062 . . . 4 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
8957adantr 480 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
904adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝑀 ∈ (measures‘dom 𝑀))
9150adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝐺 “ {𝑌}) ∈ dom 𝑀)
92 measvxrge0 34178 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ (𝐺 “ {𝑌}) ∈ dom 𝑀) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞))
9390, 91, 92syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞))
94 elxrge0 13360 . . . . . . 7 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌}))))
9594simplbi 497 . . . . . 6 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞) → (𝑀‘(𝐺 “ {𝑌})) ∈ ℝ*)
9693, 95syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ ℝ*)
9772a1i 11 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → +∞ ∈ ℝ*)
9852adantr 480 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
99 inss2 4189 . . . . . . 7 ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐺 “ {𝑌})
10099a1i 11 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐺 “ {𝑌}))
10190, 98, 91, 100measssd 34188 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ≤ (𝑀‘(𝐺 “ {𝑌})))
102 simpl1 1192 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝜑)
10345anim1i 615 . . . . . . . 8 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑌 ∈ ran 𝐺𝑌0 ))
104 eldifsn 4737 . . . . . . . 8 (𝑌 ∈ (ran 𝐺 ∖ { 0 }) ↔ (𝑌 ∈ ran 𝐺𝑌0 ))
105103, 104sylibr 234 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝑌 ∈ (ran 𝐺 ∖ { 0 }))
10613, 14, 8, 15, 16, 17, 18, 1, 39sibfima 34312 . . . . . . 7 ((𝜑𝑌 ∈ (ran 𝐺 ∖ { 0 })) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞))
107102, 105, 106syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞))
108 elico2 13313 . . . . . . . 8 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌})) ∧ (𝑀‘(𝐺 “ {𝑌})) < +∞)))
10959, 72, 108mp2an 692 . . . . . . 7 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌})) ∧ (𝑀‘(𝐺 “ {𝑌})) < +∞))
110109simp3bi 1147 . . . . . 6 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) → (𝑀‘(𝐺 “ {𝑌})) < +∞)
111107, 110syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) < +∞)
11289, 96, 97, 101, 111xrlelttrd 13062 . . . 4 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
11388, 112jaodan 959 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
114 xrre3 13073 . . 3 ((((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ∈ ℝ) ∧ (0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ)
11558, 60, 63, 113, 114syl22anc 838 . 2 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ)
116 elico2 13313 . . 3 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)))
11759, 72, 116mp2an 692 . 2 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞))
118115, 63, 113, 117syl3anbrc 1344 1 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3900  cin 3902  wss 3903  {csn 4577   cuni 4858   class class class wbr 5092  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  [,)cico 13250  [,]cicc 13251  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  TopOpenctopn 17325  0gc0g 17343  Topctop 22778  TopSpctps 22817  Clsdccld 22901  Frect1 23192  ℝHomcrrh 33966  sigAlgebracsiga 34081  sigaGencsigagen 34111  measurescmeas 34168  MblFnMcmbfm 34222  sitgcsitg 34303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20765  df-scaf 20766  df-sra 21077  df-rgmod 21078  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-t1 23199  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tmd 23957  df-tgp 23958  df-tsms 24012  df-trg 24045  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472  df-ii 24768  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-esum 34001  df-siga 34082  df-sigagen 34112  df-meas 34169  df-mbfm 34223  df-sitg 34304
This theorem is referenced by:  sibfof  34314  sitgaddlemb  34322
  Copyright terms: Public domain W3C validator