Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfinima Structured version   Visualization version   GIF version

Theorem sibfinima 32206
Description: The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfinima.g (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfinima.w (𝜑𝑊 ∈ TopSp)
sibfinima.j (𝜑𝐽 ∈ Fre)
Assertion
Ref Expression
sibfinima (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞))

Proof of Theorem sibfinima
StepHypRef Expression
1 sitgval.2 . . . . . . . 8 (𝜑𝑀 ran measures)
2 measbasedom 32070 . . . . . . . 8 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
31, 2sylib 217 . . . . . . 7 (𝜑𝑀 ∈ (measures‘dom 𝑀))
433ad2ant1 1131 . . . . . 6 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑀 ∈ (measures‘dom 𝑀))
5 dmmeas 32069 . . . . . . . . 9 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
61, 5syl 17 . . . . . . . 8 (𝜑 → dom 𝑀 ran sigAlgebra)
763ad2ant1 1131 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → dom 𝑀 ran sigAlgebra)
8 sitgval.s . . . . . . . . . 10 𝑆 = (sigaGen‘𝐽)
9 sibfinima.j . . . . . . . . . . 11 (𝜑𝐽 ∈ Fre)
109sgsiga 32010 . . . . . . . . . 10 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
118, 10eqeltrid 2843 . . . . . . . . 9 (𝜑𝑆 ran sigAlgebra)
12113ad2ant1 1131 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑆 ran sigAlgebra)
13 sitgval.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
14 sitgval.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑊)
15 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
16 sitgval.x . . . . . . . . . 10 · = ( ·𝑠𝑊)
17 sitgval.h . . . . . . . . . 10 𝐻 = (ℝHom‘(Scalar‘𝑊))
18 sitgval.1 . . . . . . . . . 10 (𝜑𝑊𝑉)
19 sibfmbl.1 . . . . . . . . . 10 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
2013, 14, 8, 15, 16, 17, 18, 1, 19sibfmbl 32202 . . . . . . . . 9 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
21203ad2ant1 1131 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
22 sibfinima.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ TopSp)
2314tpstop 21994 . . . . . . . . . . . 12 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
24 cldssbrsiga 32055 . . . . . . . . . . . 12 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
2625, 8sseqtrrdi 3968 . . . . . . . . . 10 (𝜑 → (Clsd‘𝐽) ⊆ 𝑆)
27263ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (Clsd‘𝐽) ⊆ 𝑆)
2893ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐽 ∈ Fre)
2913, 14, 8, 15, 16, 17, 18, 1, 19sibff 32203 . . . . . . . . . . . . 13 (𝜑𝐹: dom 𝑀 𝐽)
3029frnd 6592 . . . . . . . . . . . 12 (𝜑 → ran 𝐹 𝐽)
31303ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ran 𝐹 𝐽)
32 simp2 1135 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑋 ∈ ran 𝐹)
3331, 32sseldd 3918 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑋 𝐽)
34 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
3534t1sncld 22385 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑋 𝐽) → {𝑋} ∈ (Clsd‘𝐽))
3628, 33, 35syl2anc 583 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑋} ∈ (Clsd‘𝐽))
3727, 36sseldd 3918 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑋} ∈ 𝑆)
387, 12, 21, 37mbfmcnvima 32124 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝐹 “ {𝑋}) ∈ dom 𝑀)
39 sibfinima.g . . . . . . . . . 10 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
4013, 14, 8, 15, 16, 17, 18, 1, 39sibfmbl 32202 . . . . . . . . 9 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
41403ad2ant1 1131 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
4213, 14, 8, 15, 16, 17, 18, 1, 39sibff 32203 . . . . . . . . . . . . 13 (𝜑𝐺: dom 𝑀 𝐽)
4342frnd 6592 . . . . . . . . . . . 12 (𝜑 → ran 𝐺 𝐽)
44433ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ran 𝐺 𝐽)
45 simp3 1136 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑌 ∈ ran 𝐺)
4644, 45sseldd 3918 . . . . . . . . . 10 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 𝑌 𝐽)
4734t1sncld 22385 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑌 𝐽) → {𝑌} ∈ (Clsd‘𝐽))
4828, 46, 47syl2anc 583 . . . . . . . . 9 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑌} ∈ (Clsd‘𝐽))
4927, 48sseldd 3918 . . . . . . . 8 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → {𝑌} ∈ 𝑆)
507, 12, 41, 49mbfmcnvima 32124 . . . . . . 7 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝐺 “ {𝑌}) ∈ dom 𝑀)
51 inelsiga 32003 . . . . . . 7 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {𝑋}) ∈ dom 𝑀 ∧ (𝐺 “ {𝑌}) ∈ dom 𝑀) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
527, 38, 50, 51syl3anc 1369 . . . . . 6 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
53 measvxrge0 32073 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞))
544, 52, 53syl2anc 583 . . . . 5 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞))
55 elxrge0 13118 . . . . . 6 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})))))
5655simplbi 497 . . . . 5 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
5754, 56syl 17 . . . 4 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
5857adantr 480 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
59 0re 10908 . . . 4 0 ∈ ℝ
6059a1i 11 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → 0 ∈ ℝ)
6155simprbi 496 . . . . 5 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,]+∞) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6254, 61syl 17 . . . 4 ((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6362adantr 480 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))))
6457adantr 480 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
654adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝑀 ∈ (measures‘dom 𝑀))
6638adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝐹 “ {𝑋}) ∈ dom 𝑀)
67 measvxrge0 32073 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ (𝐹 “ {𝑋}) ∈ dom 𝑀) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞))
6865, 66, 67syl2anc 583 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞))
69 elxrge0 13118 . . . . . . 7 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋}))))
7069simplbi 497 . . . . . 6 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,]+∞) → (𝑀‘(𝐹 “ {𝑋})) ∈ ℝ*)
7168, 70syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ ℝ*)
72 pnfxr 10960 . . . . . 6 +∞ ∈ ℝ*
7372a1i 11 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → +∞ ∈ ℝ*)
7452adantr 480 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
75 inss1 4159 . . . . . . 7 ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐹 “ {𝑋})
7675a1i 11 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐹 “ {𝑋}))
7765, 74, 66, 76measssd 32083 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ≤ (𝑀‘(𝐹 “ {𝑋})))
78 simpl1 1189 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝜑)
7932anim1i 614 . . . . . . . 8 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑋 ∈ ran 𝐹𝑋0 ))
80 eldifsn 4717 . . . . . . . 8 (𝑋 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑋 ∈ ran 𝐹𝑋0 ))
8179, 80sylibr 233 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → 𝑋 ∈ (ran 𝐹 ∖ { 0 }))
8213, 14, 8, 15, 16, 17, 18, 1, 19sibfima 32205 . . . . . . 7 ((𝜑𝑋 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞))
8378, 81, 82syl2anc 583 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞))
84 elico2 13072 . . . . . . . 8 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋})) ∧ (𝑀‘(𝐹 “ {𝑋})) < +∞)))
8559, 72, 84mp2an 688 . . . . . . 7 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐹 “ {𝑋})) ∧ (𝑀‘(𝐹 “ {𝑋})) < +∞))
8685simp3bi 1145 . . . . . 6 ((𝑀‘(𝐹 “ {𝑋})) ∈ (0[,)+∞) → (𝑀‘(𝐹 “ {𝑋})) < +∞)
8783, 86syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘(𝐹 “ {𝑋})) < +∞)
8864, 71, 73, 77, 87xrlelttrd 12823 . . . 4 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑋0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
8957adantr 480 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ*)
904adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝑀 ∈ (measures‘dom 𝑀))
9150adantr 480 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝐺 “ {𝑌}) ∈ dom 𝑀)
92 measvxrge0 32073 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ (𝐺 “ {𝑌}) ∈ dom 𝑀) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞))
9390, 91, 92syl2anc 583 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞))
94 elxrge0 13118 . . . . . . 7 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌}))))
9594simplbi 497 . . . . . 6 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,]+∞) → (𝑀‘(𝐺 “ {𝑌})) ∈ ℝ*)
9693, 95syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ ℝ*)
9772a1i 11 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → +∞ ∈ ℝ*)
9852adantr 480 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ∈ dom 𝑀)
99 inss2 4160 . . . . . . 7 ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐺 “ {𝑌})
10099a1i 11 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → ((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌})) ⊆ (𝐺 “ {𝑌}))
10190, 98, 91, 100measssd 32083 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ≤ (𝑀‘(𝐺 “ {𝑌})))
102 simpl1 1189 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝜑)
10345anim1i 614 . . . . . . . 8 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑌 ∈ ran 𝐺𝑌0 ))
104 eldifsn 4717 . . . . . . . 8 (𝑌 ∈ (ran 𝐺 ∖ { 0 }) ↔ (𝑌 ∈ ran 𝐺𝑌0 ))
105103, 104sylibr 233 . . . . . . 7 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → 𝑌 ∈ (ran 𝐺 ∖ { 0 }))
10613, 14, 8, 15, 16, 17, 18, 1, 39sibfima 32205 . . . . . . 7 ((𝜑𝑌 ∈ (ran 𝐺 ∖ { 0 })) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞))
107102, 105, 106syl2anc 583 . . . . . 6 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞))
108 elico2 13072 . . . . . . . 8 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌})) ∧ (𝑀‘(𝐺 “ {𝑌})) < +∞)))
10959, 72, 108mp2an 688 . . . . . . 7 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(𝐺 “ {𝑌})) ∧ (𝑀‘(𝐺 “ {𝑌})) < +∞))
110109simp3bi 1145 . . . . . 6 ((𝑀‘(𝐺 “ {𝑌})) ∈ (0[,)+∞) → (𝑀‘(𝐺 “ {𝑌})) < +∞)
111107, 110syl 17 . . . . 5 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘(𝐺 “ {𝑌})) < +∞)
11289, 96, 97, 101, 111xrlelttrd 12823 . . . 4 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ 𝑌0 ) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
11388, 112jaodan 954 . . 3 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)
114 xrre3 12834 . . 3 ((((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ∈ ℝ) ∧ (0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ)
11558, 60, 63, 113, 114syl22anc 835 . 2 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ)
116 elico2 13072 . . 3 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞)))
11759, 72, 116mp2an 688 . 2 ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∧ (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) < +∞))
118115, 63, 113, 117syl3anbrc 1341 1 (((𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺) ∧ (𝑋0𝑌0 )) → (𝑀‘((𝐹 “ {𝑋}) ∩ (𝐺 “ {𝑌}))) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  cin 3882  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,)cico 13010  [,]cicc 13011  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  TopOpenctopn 17049  0gc0g 17067  Topctop 21950  TopSpctps 21989  Clsdccld 22075  Frect1 22366  ℝHomcrrh 31843  sigAlgebracsiga 31976  sigaGencsigagen 32006  measurescmeas 32063  MblFnMcmbfm 32117  sitgcsitg 32196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-ordt 17129  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-t1 22373  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-tsms 23186  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-ii 23946  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-esum 31896  df-siga 31977  df-sigagen 32007  df-meas 32064  df-mbfm 32118  df-sitg 32197
This theorem is referenced by:  sibfof  32207  sitgaddlemb  32215
  Copyright terms: Public domain W3C validator