|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoplcbv | Structured version Visualization version GIF version | ||
| Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | 
| Ref | Expression | 
|---|---|
| tendoplcbv | ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tendoplcbv.p | . 2 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 2 | fveq1 6904 | . . . . 5 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
| 3 | 2 | coeq1d 5871 | . . . 4 ⊢ (𝑠 = 𝑢 → ((𝑠‘𝑓) ∘ (𝑡‘𝑓)) = ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) | 
| 4 | 3 | mpteq2dv 5243 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓)))) | 
| 5 | fveq1 6904 | . . . . . 6 ⊢ (𝑡 = 𝑣 → (𝑡‘𝑓) = (𝑣‘𝑓)) | |
| 6 | 5 | coeq2d 5872 | . . . . 5 ⊢ (𝑡 = 𝑣 → ((𝑢‘𝑓) ∘ (𝑡‘𝑓)) = ((𝑢‘𝑓) ∘ (𝑣‘𝑓))) | 
| 7 | 6 | mpteq2dv 5243 | . . . 4 ⊢ (𝑡 = 𝑣 → (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑣‘𝑓)))) | 
| 8 | fveq2 6905 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
| 9 | fveq2 6905 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑣‘𝑓) = (𝑣‘𝑔)) | |
| 10 | 8, 9 | coeq12d 5874 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑢‘𝑓) ∘ (𝑣‘𝑓)) = ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) | 
| 11 | 10 | cbvmptv 5254 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑣‘𝑓))) = (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) | 
| 12 | 7, 11 | eqtrdi 2792 | . . 3 ⊢ (𝑡 = 𝑣 → (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) = (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) | 
| 13 | 4, 12 | cbvmpov 7529 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) | 
| 14 | 1, 13 | eqtri 2764 | 1 ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ↦ cmpt 5224 ∘ ccom 5688 ‘cfv 6560 ∈ cmpo 7434 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-co 5693 df-iota 6513 df-fv 6568 df-oprab 7436 df-mpo 7437 | 
| This theorem is referenced by: tendopl 40779 | 
| Copyright terms: Public domain | W3C validator |