Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoplcbv | Structured version Visualization version GIF version |
Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
Ref | Expression |
---|---|
tendoplcbv | ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoplcbv.p | . 2 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
2 | fveq1 6773 | . . . . 5 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
3 | 2 | coeq1d 5770 | . . . 4 ⊢ (𝑠 = 𝑢 → ((𝑠‘𝑓) ∘ (𝑡‘𝑓)) = ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) |
4 | 3 | mpteq2dv 5176 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓)))) |
5 | fveq1 6773 | . . . . . 6 ⊢ (𝑡 = 𝑣 → (𝑡‘𝑓) = (𝑣‘𝑓)) | |
6 | 5 | coeq2d 5771 | . . . . 5 ⊢ (𝑡 = 𝑣 → ((𝑢‘𝑓) ∘ (𝑡‘𝑓)) = ((𝑢‘𝑓) ∘ (𝑣‘𝑓))) |
7 | 6 | mpteq2dv 5176 | . . . 4 ⊢ (𝑡 = 𝑣 → (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑣‘𝑓)))) |
8 | fveq2 6774 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
9 | fveq2 6774 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑣‘𝑓) = (𝑣‘𝑔)) | |
10 | 8, 9 | coeq12d 5773 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑢‘𝑓) ∘ (𝑣‘𝑓)) = ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) |
11 | 10 | cbvmptv 5187 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑣‘𝑓))) = (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) |
12 | 7, 11 | eqtrdi 2794 | . . 3 ⊢ (𝑡 = 𝑣 → (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) = (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
13 | 4, 12 | cbvmpov 7370 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
14 | 1, 13 | eqtri 2766 | 1 ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ↦ cmpt 5157 ∘ ccom 5593 ‘cfv 6433 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-co 5598 df-iota 6391 df-fv 6441 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: tendopl 38790 |
Copyright terms: Public domain | W3C validator |