Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcbv Structured version   Visualization version   GIF version

Theorem tendoplcbv 40764
Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.)
Hypothesis
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendoplcbv 𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑣,𝐸   𝑓,𝑔,𝑠,𝑡,𝑢,𝑣,𝑇
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑓,𝑔,𝑠)   𝐸(𝑓,𝑔)

Proof of Theorem tendoplcbv
StepHypRef Expression
1 tendoplcbv.p . 2 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2 fveq1 6859 . . . . 5 (𝑠 = 𝑢 → (𝑠𝑓) = (𝑢𝑓))
32coeq1d 5827 . . . 4 (𝑠 = 𝑢 → ((𝑠𝑓) ∘ (𝑡𝑓)) = ((𝑢𝑓) ∘ (𝑡𝑓)))
43mpteq2dv 5203 . . 3 (𝑠 = 𝑢 → (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))) = (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑡𝑓))))
5 fveq1 6859 . . . . . 6 (𝑡 = 𝑣 → (𝑡𝑓) = (𝑣𝑓))
65coeq2d 5828 . . . . 5 (𝑡 = 𝑣 → ((𝑢𝑓) ∘ (𝑡𝑓)) = ((𝑢𝑓) ∘ (𝑣𝑓)))
76mpteq2dv 5203 . . . 4 (𝑡 = 𝑣 → (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑡𝑓))) = (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑣𝑓))))
8 fveq2 6860 . . . . . 6 (𝑓 = 𝑔 → (𝑢𝑓) = (𝑢𝑔))
9 fveq2 6860 . . . . . 6 (𝑓 = 𝑔 → (𝑣𝑓) = (𝑣𝑔))
108, 9coeq12d 5830 . . . . 5 (𝑓 = 𝑔 → ((𝑢𝑓) ∘ (𝑣𝑓)) = ((𝑢𝑔) ∘ (𝑣𝑔)))
1110cbvmptv 5213 . . . 4 (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑣𝑓))) = (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔)))
127, 11eqtrdi 2781 . . 3 (𝑡 = 𝑣 → (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑡𝑓))) = (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
134, 12cbvmpov 7486 . 2 (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
141, 13eqtri 2753 1 𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cmpt 5190  ccom 5644  cfv 6513  cmpo 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-co 5649  df-iota 6466  df-fv 6521  df-oprab 7393  df-mpo 7394
This theorem is referenced by:  tendopl  40765
  Copyright terms: Public domain W3C validator