![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoplcbv | Structured version Visualization version GIF version |
Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
Ref | Expression |
---|---|
tendoplcbv | ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoplcbv.p | . 2 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
2 | fveq1 6919 | . . . . 5 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
3 | 2 | coeq1d 5886 | . . . 4 ⊢ (𝑠 = 𝑢 → ((𝑠‘𝑓) ∘ (𝑡‘𝑓)) = ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) |
4 | 3 | mpteq2dv 5268 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓)))) |
5 | fveq1 6919 | . . . . . 6 ⊢ (𝑡 = 𝑣 → (𝑡‘𝑓) = (𝑣‘𝑓)) | |
6 | 5 | coeq2d 5887 | . . . . 5 ⊢ (𝑡 = 𝑣 → ((𝑢‘𝑓) ∘ (𝑡‘𝑓)) = ((𝑢‘𝑓) ∘ (𝑣‘𝑓))) |
7 | 6 | mpteq2dv 5268 | . . . 4 ⊢ (𝑡 = 𝑣 → (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑣‘𝑓)))) |
8 | fveq2 6920 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
9 | fveq2 6920 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑣‘𝑓) = (𝑣‘𝑔)) | |
10 | 8, 9 | coeq12d 5889 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑢‘𝑓) ∘ (𝑣‘𝑓)) = ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) |
11 | 10 | cbvmptv 5279 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑣‘𝑓))) = (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) |
12 | 7, 11 | eqtrdi 2796 | . . 3 ⊢ (𝑡 = 𝑣 → (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) = (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
13 | 4, 12 | cbvmpov 7545 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
14 | 1, 13 | eqtri 2768 | 1 ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ↦ cmpt 5249 ∘ ccom 5704 ‘cfv 6573 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-co 5709 df-iota 6525 df-fv 6581 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: tendopl 40733 |
Copyright terms: Public domain | W3C validator |