| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoplcbv | Structured version Visualization version GIF version | ||
| Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| Ref | Expression |
|---|---|
| tendoplcbv | ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoplcbv.p | . 2 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 2 | fveq1 6859 | . . . . 5 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
| 3 | 2 | coeq1d 5827 | . . . 4 ⊢ (𝑠 = 𝑢 → ((𝑠‘𝑓) ∘ (𝑡‘𝑓)) = ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) |
| 4 | 3 | mpteq2dv 5203 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓)))) |
| 5 | fveq1 6859 | . . . . . 6 ⊢ (𝑡 = 𝑣 → (𝑡‘𝑓) = (𝑣‘𝑓)) | |
| 6 | 5 | coeq2d 5828 | . . . . 5 ⊢ (𝑡 = 𝑣 → ((𝑢‘𝑓) ∘ (𝑡‘𝑓)) = ((𝑢‘𝑓) ∘ (𝑣‘𝑓))) |
| 7 | 6 | mpteq2dv 5203 | . . . 4 ⊢ (𝑡 = 𝑣 → (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑣‘𝑓)))) |
| 8 | fveq2 6860 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
| 9 | fveq2 6860 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑣‘𝑓) = (𝑣‘𝑔)) | |
| 10 | 8, 9 | coeq12d 5830 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑢‘𝑓) ∘ (𝑣‘𝑓)) = ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) |
| 11 | 10 | cbvmptv 5213 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑣‘𝑓))) = (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) |
| 12 | 7, 11 | eqtrdi 2781 | . . 3 ⊢ (𝑡 = 𝑣 → (𝑓 ∈ 𝑇 ↦ ((𝑢‘𝑓) ∘ (𝑡‘𝑓))) = (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
| 13 | 4, 12 | cbvmpov 7486 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
| 14 | 1, 13 | eqtri 2753 | 1 ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5190 ∘ ccom 5644 ‘cfv 6513 ∈ cmpo 7391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-co 5649 df-iota 6466 df-fv 6521 df-oprab 7393 df-mpo 7394 |
| This theorem is referenced by: tendopl 40765 |
| Copyright terms: Public domain | W3C validator |