Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcbv Structured version   Visualization version   GIF version

Theorem tendoplcbv 40252
Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.)
Hypothesis
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendoplcbv 𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑣,𝐸   𝑓,𝑔,𝑠,𝑡,𝑢,𝑣,𝑇
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑓,𝑔,𝑠)   𝐸(𝑓,𝑔)

Proof of Theorem tendoplcbv
StepHypRef Expression
1 tendoplcbv.p . 2 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2 fveq1 6899 . . . . 5 (𝑠 = 𝑢 → (𝑠𝑓) = (𝑢𝑓))
32coeq1d 5866 . . . 4 (𝑠 = 𝑢 → ((𝑠𝑓) ∘ (𝑡𝑓)) = ((𝑢𝑓) ∘ (𝑡𝑓)))
43mpteq2dv 5252 . . 3 (𝑠 = 𝑢 → (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))) = (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑡𝑓))))
5 fveq1 6899 . . . . . 6 (𝑡 = 𝑣 → (𝑡𝑓) = (𝑣𝑓))
65coeq2d 5867 . . . . 5 (𝑡 = 𝑣 → ((𝑢𝑓) ∘ (𝑡𝑓)) = ((𝑢𝑓) ∘ (𝑣𝑓)))
76mpteq2dv 5252 . . . 4 (𝑡 = 𝑣 → (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑡𝑓))) = (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑣𝑓))))
8 fveq2 6900 . . . . . 6 (𝑓 = 𝑔 → (𝑢𝑓) = (𝑢𝑔))
9 fveq2 6900 . . . . . 6 (𝑓 = 𝑔 → (𝑣𝑓) = (𝑣𝑔))
108, 9coeq12d 5869 . . . . 5 (𝑓 = 𝑔 → ((𝑢𝑓) ∘ (𝑣𝑓)) = ((𝑢𝑔) ∘ (𝑣𝑔)))
1110cbvmptv 5263 . . . 4 (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑣𝑓))) = (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔)))
127, 11eqtrdi 2783 . . 3 (𝑡 = 𝑣 → (𝑓𝑇 ↦ ((𝑢𝑓) ∘ (𝑡𝑓))) = (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
134, 12cbvmpov 7519 . 2 (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
141, 13eqtri 2755 1 𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cmpt 5233  ccom 5684  cfv 6551  cmpo 7426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-co 5689  df-iota 6503  df-fv 6559  df-oprab 7428  df-mpo 7429
This theorem is referenced by:  tendopl  40253
  Copyright terms: Public domain W3C validator