Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopl Structured version   Visualization version   GIF version

Theorem tendopl 38790
Description: Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopl2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopl ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑔,𝑠,𝑡,𝑇   𝑓,𝑊,𝑔,𝑠,𝑡   𝑈,𝑔   𝑔,𝑉
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑔,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓,𝑔)   𝐾(𝑡,𝑓,𝑔,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopl
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6773 . . . 4 (𝑢 = 𝑈 → (𝑢𝑔) = (𝑈𝑔))
21coeq1d 5770 . . 3 (𝑢 = 𝑈 → ((𝑢𝑔) ∘ (𝑣𝑔)) = ((𝑈𝑔) ∘ (𝑣𝑔)))
32mpteq2dv 5176 . 2 (𝑢 = 𝑈 → (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑣𝑔))))
4 fveq1 6773 . . . 4 (𝑣 = 𝑉 → (𝑣𝑔) = (𝑉𝑔))
54coeq2d 5771 . . 3 (𝑣 = 𝑉 → ((𝑈𝑔) ∘ (𝑣𝑔)) = ((𝑈𝑔) ∘ (𝑉𝑔)))
65mpteq2dv 5176 . 2 (𝑣 = 𝑉 → (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑣𝑔))) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
7 tendoplcbv.p . . 3 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
87tendoplcbv 38789 . 2 𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
9 tendopl2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
109fvexi 6788 . . 3 𝑇 ∈ V
1110mptex 7099 . 2 (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))) ∈ V
123, 6, 8, 11ovmpo 7433 1 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cmpt 5157  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  tendopl2  38791  tendoplcl  38795  erngplus  38817  erngplus-rN  38825  dvaplusg  39023
  Copyright terms: Public domain W3C validator