![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendopl | Structured version Visualization version GIF version |
Description: Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
tendopl2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendopl | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6842 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢‘𝑔) = (𝑈‘𝑔)) | |
2 | 1 | coeq1d 5818 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑢‘𝑔) ∘ (𝑣‘𝑔)) = ((𝑈‘𝑔) ∘ (𝑣‘𝑔))) |
3 | 2 | mpteq2dv 5208 | . 2 ⊢ (𝑢 = 𝑈 → (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑣‘𝑔)))) |
4 | fveq1 6842 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣‘𝑔) = (𝑉‘𝑔)) | |
5 | 4 | coeq2d 5819 | . . 3 ⊢ (𝑣 = 𝑉 → ((𝑈‘𝑔) ∘ (𝑣‘𝑔)) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
6 | 5 | mpteq2dv 5208 | . 2 ⊢ (𝑣 = 𝑉 → (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑣‘𝑔))) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
7 | tendoplcbv.p | . . 3 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
8 | 7 | tendoplcbv 39241 | . 2 ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
9 | tendopl2.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | 9 | fvexi 6857 | . . 3 ⊢ 𝑇 ∈ V |
11 | 10 | mptex 7174 | . 2 ⊢ (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) ∈ V |
12 | 3, 6, 8, 11 | ovmpo 7516 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5189 ∘ ccom 5638 ‘cfv 6497 (class class class)co 7358 ∈ cmpo 7360 LTrncltrn 38567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 |
This theorem is referenced by: tendopl2 39243 tendoplcl 39247 erngplus 39269 erngplus-rN 39277 dvaplusg 39475 |
Copyright terms: Public domain | W3C validator |