Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopl Structured version   Visualization version   GIF version

Theorem tendopl 39647
Description: Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopl2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopl ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑔,𝑠,𝑡,𝑇   𝑓,𝑊,𝑔,𝑠,𝑡   𝑈,𝑔   𝑔,𝑉
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑔,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓,𝑔)   𝐾(𝑡,𝑓,𝑔,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopl
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6891 . . . 4 (𝑢 = 𝑈 → (𝑢𝑔) = (𝑈𝑔))
21coeq1d 5862 . . 3 (𝑢 = 𝑈 → ((𝑢𝑔) ∘ (𝑣𝑔)) = ((𝑈𝑔) ∘ (𝑣𝑔)))
32mpteq2dv 5251 . 2 (𝑢 = 𝑈 → (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑣𝑔))))
4 fveq1 6891 . . . 4 (𝑣 = 𝑉 → (𝑣𝑔) = (𝑉𝑔))
54coeq2d 5863 . . 3 (𝑣 = 𝑉 → ((𝑈𝑔) ∘ (𝑣𝑔)) = ((𝑈𝑔) ∘ (𝑉𝑔)))
65mpteq2dv 5251 . 2 (𝑣 = 𝑉 → (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑣𝑔))) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
7 tendoplcbv.p . . 3 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
87tendoplcbv 39646 . 2 𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
9 tendopl2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
109fvexi 6906 . . 3 𝑇 ∈ V
1110mptex 7225 . 2 (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))) ∈ V
123, 6, 8, 11ovmpo 7568 1 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cmpt 5232  ccom 5681  cfv 6544  (class class class)co 7409  cmpo 7411  LTrncltrn 38972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414
This theorem is referenced by:  tendopl2  39648  tendoplcl  39652  erngplus  39674  erngplus-rN  39682  dvaplusg  39880
  Copyright terms: Public domain W3C validator