Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopl Structured version   Visualization version   GIF version

Theorem tendopl 40755
Description: Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopl2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopl ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑔,𝑠,𝑡,𝑇   𝑓,𝑊,𝑔,𝑠,𝑡   𝑈,𝑔   𝑔,𝑉
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑔,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓,𝑔)   𝐾(𝑡,𝑓,𝑔,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopl
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6821 . . . 4 (𝑢 = 𝑈 → (𝑢𝑔) = (𝑈𝑔))
21coeq1d 5804 . . 3 (𝑢 = 𝑈 → ((𝑢𝑔) ∘ (𝑣𝑔)) = ((𝑈𝑔) ∘ (𝑣𝑔)))
32mpteq2dv 5186 . 2 (𝑢 = 𝑈 → (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑣𝑔))))
4 fveq1 6821 . . . 4 (𝑣 = 𝑉 → (𝑣𝑔) = (𝑉𝑔))
54coeq2d 5805 . . 3 (𝑣 = 𝑉 → ((𝑈𝑔) ∘ (𝑣𝑔)) = ((𝑈𝑔) ∘ (𝑉𝑔)))
65mpteq2dv 5186 . 2 (𝑣 = 𝑉 → (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑣𝑔))) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
7 tendoplcbv.p . . 3 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
87tendoplcbv 40754 . 2 𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
9 tendopl2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
109fvexi 6836 . . 3 𝑇 ∈ V
1110mptex 7159 . 2 (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))) ∈ V
123, 6, 8, 11ovmpo 7509 1 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5173  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  LTrncltrn 40080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354
This theorem is referenced by:  tendopl2  40756  tendoplcl  40760  erngplus  40782  erngplus-rN  40790  dvaplusg  40988
  Copyright terms: Public domain W3C validator