![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendopl | Structured version Visualization version GIF version |
Description: Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
tendopl2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendopl | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6891 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢‘𝑔) = (𝑈‘𝑔)) | |
2 | 1 | coeq1d 5862 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑢‘𝑔) ∘ (𝑣‘𝑔)) = ((𝑈‘𝑔) ∘ (𝑣‘𝑔))) |
3 | 2 | mpteq2dv 5251 | . 2 ⊢ (𝑢 = 𝑈 → (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑣‘𝑔)))) |
4 | fveq1 6891 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣‘𝑔) = (𝑉‘𝑔)) | |
5 | 4 | coeq2d 5863 | . . 3 ⊢ (𝑣 = 𝑉 → ((𝑈‘𝑔) ∘ (𝑣‘𝑔)) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
6 | 5 | mpteq2dv 5251 | . 2 ⊢ (𝑣 = 𝑉 → (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑣‘𝑔))) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
7 | tendoplcbv.p | . . 3 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
8 | 7 | tendoplcbv 39646 | . 2 ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
9 | tendopl2.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | 9 | fvexi 6906 | . . 3 ⊢ 𝑇 ∈ V |
11 | 10 | mptex 7225 | . 2 ⊢ (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) ∈ V |
12 | 3, 6, 8, 11 | ovmpo 7568 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5232 ∘ ccom 5681 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 LTrncltrn 38972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: tendopl2 39648 tendoplcl 39652 erngplus 39674 erngplus-rN 39682 dvaplusg 39880 |
Copyright terms: Public domain | W3C validator |