![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendopl | Structured version Visualization version GIF version |
Description: Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
tendopl2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendopl | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6331 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢‘𝑔) = (𝑈‘𝑔)) | |
2 | 1 | coeq1d 5422 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑢‘𝑔) ∘ (𝑣‘𝑔)) = ((𝑈‘𝑔) ∘ (𝑣‘𝑔))) |
3 | 2 | mpteq2dv 4879 | . 2 ⊢ (𝑢 = 𝑈 → (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔))) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑣‘𝑔)))) |
4 | fveq1 6331 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣‘𝑔) = (𝑉‘𝑔)) | |
5 | 4 | coeq2d 5423 | . . 3 ⊢ (𝑣 = 𝑉 → ((𝑈‘𝑔) ∘ (𝑣‘𝑔)) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
6 | 5 | mpteq2dv 4879 | . 2 ⊢ (𝑣 = 𝑉 → (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑣‘𝑔))) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
7 | tendoplcbv.p | . . 3 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
8 | 7 | tendoplcbv 36584 | . 2 ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) |
9 | tendopl2.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | fvex 6342 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
11 | 9, 10 | eqeltri 2846 | . . 3 ⊢ 𝑇 ∈ V |
12 | 11 | mptex 6630 | . 2 ⊢ (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) ∈ V |
13 | 3, 6, 8, 12 | ovmpt2 6943 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ↦ cmpt 4863 ∘ ccom 5253 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 LTrncltrn 35909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 |
This theorem is referenced by: tendopl2 36586 tendoplcl 36590 erngplus 36612 erngplus-rN 36620 dvaplusg 36818 |
Copyright terms: Public domain | W3C validator |