MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwncomb Structured version   Visualization version   GIF version

Theorem tgbtwncomb 26850
Description: Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncomb.3 (𝜑𝐶𝑃)
Assertion
Ref Expression
tgbtwncomb (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))

Proof of Theorem tgbtwncomb
StepHypRef Expression
1 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
2 tkgeom.d . . 3 = (dist‘𝐺)
3 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.1 . . . 4 (𝜑𝐴𝑃)
76adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
8 tgbtwntriv2.2 . . . 4 (𝜑𝐵𝑃)
98adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
10 tgbtwncomb.3 . . . 4 (𝜑𝐶𝑃)
1110adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
12 simpr 485 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
131, 2, 3, 5, 7, 9, 11, 12tgbtwncom 26849 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
144adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
1510adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
168adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
176adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
18 simpr 485 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
191, 2, 3, 14, 15, 16, 17, 18tgbtwncom 26849 . 2 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
2013, 19impbida 798 1 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814
This theorem is referenced by:  colcom  26919  colrot1  26920  lnhl  26976  lncom  26983  lnrot1  26984  lnrot2  26985  mirreu3  27015
  Copyright terms: Public domain W3C validator