MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwncomb Structured version   Visualization version   GIF version

Theorem tgbtwncomb 28512
Description: Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncomb.3 (𝜑𝐶𝑃)
Assertion
Ref Expression
tgbtwncomb (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))

Proof of Theorem tgbtwncomb
StepHypRef Expression
1 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
2 tkgeom.d . . 3 = (dist‘𝐺)
3 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.1 . . . 4 (𝜑𝐴𝑃)
76adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
8 tgbtwntriv2.2 . . . 4 (𝜑𝐵𝑃)
98adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
10 tgbtwncomb.3 . . . 4 (𝜑𝐶𝑃)
1110adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
12 simpr 484 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
131, 2, 3, 5, 7, 9, 11, 12tgbtwncom 28511 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
144adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
1510adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
168adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
176adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
18 simpr 484 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
191, 2, 3, 14, 15, 16, 17, 18tgbtwncom 28511 . 2 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
2013, 19impbida 801 1 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476
This theorem is referenced by:  colcom  28581  colrot1  28582  lnhl  28638  lncom  28645  lnrot1  28646  lnrot2  28647  mirreu3  28677
  Copyright terms: Public domain W3C validator