| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwncomb | Structured version Visualization version GIF version | ||
| Description: Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwncomb.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgbtwncomb | ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwntriv2.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴 ∈ 𝑃) |
| 8 | tgbtwntriv2.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ 𝑃) |
| 10 | tgbtwncomb.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶 ∈ 𝑃) |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 13 | 1, 2, 3, 5, 7, 9, 11, 12 | tgbtwncom 28468 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 14 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG) |
| 15 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶 ∈ 𝑃) |
| 16 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ 𝑃) |
| 17 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ 𝑃) |
| 18 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴)) | |
| 19 | 1, 2, 3, 14, 15, 16, 17, 18 | tgbtwncom 28468 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 20 | 13, 19 | impbida 800 | 1 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 TarskiGcstrkg 28407 Itvcitv 28413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-trkgc 28428 df-trkgb 28429 df-trkgcb 28430 df-trkg 28433 |
| This theorem is referenced by: colcom 28538 colrot1 28539 lnhl 28595 lncom 28602 lnrot1 28603 lnrot2 28604 mirreu3 28634 |
| Copyright terms: Public domain | W3C validator |