MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwncomb Structured version   Visualization version   GIF version

Theorem tgbtwncomb 25840
Description: Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncomb.3 (𝜑𝐶𝑃)
Assertion
Ref Expression
tgbtwncomb (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))

Proof of Theorem tgbtwncomb
StepHypRef Expression
1 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
2 tkgeom.d . . 3 = (dist‘𝐺)
3 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 474 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.1 . . . 4 (𝜑𝐴𝑃)
76adantr 474 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
8 tgbtwntriv2.2 . . . 4 (𝜑𝐵𝑃)
98adantr 474 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
10 tgbtwncomb.3 . . . 4 (𝜑𝐶𝑃)
1110adantr 474 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
12 simpr 479 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
131, 2, 3, 5, 7, 9, 11, 12tgbtwncom 25839 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
144adantr 474 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
1510adantr 474 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
168adantr 474 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
176adantr 474 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
18 simpr 479 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
191, 2, 3, 14, 15, 16, 17, 18tgbtwncom 25839 . 2 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
2013, 19impbida 791 1 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  cfv 6135  (class class class)co 6922  Basecbs 16255  distcds 16347  TarskiGcstrkg 25781  Itvcitv 25787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-nul 5025
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-iota 6099  df-fv 6143  df-ov 6925  df-trkgc 25799  df-trkgb 25800  df-trkgcb 25801  df-trkg 25804
This theorem is referenced by:  colcom  25909  colrot1  25910  lnhl  25966  lncom  25973  lnrot1  25974  lnrot2  25975  mirreu3  26005
  Copyright terms: Public domain W3C validator