MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnhl Structured version   Visualization version   GIF version

Theorem lnhl 28518
Description: Either a point 𝐶 on the line AB is on the same side as 𝐴 or on the opposite side. (Contributed by Thierry Arnoux, 21-Sep-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
lnhl.l 𝐿 = (LineG‘𝐺)
lnhl.1 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
Assertion
Ref Expression
lnhl (𝜑 → (𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)))

Proof of Theorem lnhl
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐶 = 𝐵) → 𝐶 = 𝐵)
2 ishlg.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2729 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 ishlg.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 hlln.1 . . . . . 6 (𝜑𝐺 ∈ TarskiG)
6 ishlg.a . . . . . 6 (𝜑𝐴𝑃)
7 ishlg.c . . . . . 6 (𝜑𝐶𝑃)
82, 3, 4, 5, 6, 7tgbtwntriv2 28390 . . . . 5 (𝜑𝐶 ∈ (𝐴𝐼𝐶))
98adantr 480 . . . 4 ((𝜑𝐶 = 𝐵) → 𝐶 ∈ (𝐴𝐼𝐶))
101, 9eqeltrrd 2829 . . 3 ((𝜑𝐶 = 𝐵) → 𝐵 ∈ (𝐴𝐼𝐶))
1110olcd 874 . 2 ((𝜑𝐶 = 𝐵) → (𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)))
12 lnhl.1 . . . . . 6 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
13 lnhl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
14 ishlg.b . . . . . . 7 (𝜑𝐵𝑃)
152, 13, 4, 5, 6, 14, 12tglngne 28453 . . . . . . 7 (𝜑𝐴𝐵)
162, 13, 4, 5, 6, 14, 15, 7tgellng 28456 . . . . . 6 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
1712, 16mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
18 df-3or 1087 . . . . 5 ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
1917, 18sylib 218 . . . 4 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
2019adantr 480 . . 3 ((𝜑𝐶𝐵) → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
21 ishlg.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
222, 4, 21, 7, 6, 14, 5ishlg 28505 . . . . . . 7 (𝜑 → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
2322adantr 480 . . . . . 6 ((𝜑𝐶𝐵) → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
24 df-3an 1088 . . . . . 6 ((𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))) ↔ ((𝐶𝐵𝐴𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
2523, 24bitrdi 287 . . . . 5 ((𝜑𝐶𝐵) → (𝐶(𝐾𝐵)𝐴 ↔ ((𝐶𝐵𝐴𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
2615anim1ci 616 . . . . . 6 ((𝜑𝐶𝐵) → (𝐶𝐵𝐴𝐵))
2726biantrurd 532 . . . . 5 ((𝜑𝐶𝐵) → ((𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)) ↔ ((𝐶𝐵𝐴𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
285adantr 480 . . . . . . 7 ((𝜑𝐶𝐵) → 𝐺 ∈ TarskiG)
2914adantr 480 . . . . . . 7 ((𝜑𝐶𝐵) → 𝐵𝑃)
307adantr 480 . . . . . . 7 ((𝜑𝐶𝐵) → 𝐶𝑃)
316adantr 480 . . . . . . 7 ((𝜑𝐶𝐵) → 𝐴𝑃)
322, 3, 4, 28, 29, 30, 31tgbtwncomb 28392 . . . . . 6 ((𝜑𝐶𝐵) → (𝐶 ∈ (𝐵𝐼𝐴) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
332, 3, 4, 28, 29, 31, 30tgbtwncomb 28392 . . . . . 6 ((𝜑𝐶𝐵) → (𝐴 ∈ (𝐵𝐼𝐶) ↔ 𝐴 ∈ (𝐶𝐼𝐵)))
3432, 33orbi12d 918 . . . . 5 ((𝜑𝐶𝐵) → ((𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))))
3525, 27, 343bitr2d 307 . . . 4 ((𝜑𝐶𝐵) → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))))
3635orbi1d 916 . . 3 ((𝜑𝐶𝐵) → ((𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
3720, 36mpbird 257 . 2 ((𝜑𝐶𝐵) → (𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)))
3811, 37pm2.61dane 3012 1 (𝜑 → (𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  distcds 17205  TarskiGcstrkg 28330  Itvcitv 28336  LineGclng 28337  hlGchlg 28503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-trkgc 28351  df-trkgb 28352  df-trkgcb 28353  df-trkg 28356  df-hlg 28504
This theorem is referenced by:  hlpasch  28659
  Copyright terms: Public domain W3C validator