MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnhl Structured version   Visualization version   GIF version

Theorem lnhl 28578
Description: Either a point 𝐶 on the line AB is on the same side as 𝐴 or on the opposite side. (Contributed by Thierry Arnoux, 21-Sep-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
lnhl.l 𝐿 = (LineG‘𝐺)
lnhl.1 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
Assertion
Ref Expression
lnhl (𝜑 → (𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)))

Proof of Theorem lnhl
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐶 = 𝐵) → 𝐶 = 𝐵)
2 ishlg.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2734 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 ishlg.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 hlln.1 . . . . . 6 (𝜑𝐺 ∈ TarskiG)
6 ishlg.a . . . . . 6 (𝜑𝐴𝑃)
7 ishlg.c . . . . . 6 (𝜑𝐶𝑃)
82, 3, 4, 5, 6, 7tgbtwntriv2 28450 . . . . 5 (𝜑𝐶 ∈ (𝐴𝐼𝐶))
98adantr 480 . . . 4 ((𝜑𝐶 = 𝐵) → 𝐶 ∈ (𝐴𝐼𝐶))
101, 9eqeltrrd 2834 . . 3 ((𝜑𝐶 = 𝐵) → 𝐵 ∈ (𝐴𝐼𝐶))
1110olcd 874 . 2 ((𝜑𝐶 = 𝐵) → (𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)))
12 lnhl.1 . . . . . 6 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
13 lnhl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
14 ishlg.b . . . . . . 7 (𝜑𝐵𝑃)
152, 13, 4, 5, 6, 14, 12tglngne 28513 . . . . . . 7 (𝜑𝐴𝐵)
162, 13, 4, 5, 6, 14, 15, 7tgellng 28516 . . . . . 6 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
1712, 16mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
18 df-3or 1087 . . . . 5 ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
1917, 18sylib 218 . . . 4 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
2019adantr 480 . . 3 ((𝜑𝐶𝐵) → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
21 ishlg.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
222, 4, 21, 7, 6, 14, 5ishlg 28565 . . . . . . 7 (𝜑 → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
2322adantr 480 . . . . . 6 ((𝜑𝐶𝐵) → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
24 df-3an 1088 . . . . . 6 ((𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))) ↔ ((𝐶𝐵𝐴𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
2523, 24bitrdi 287 . . . . 5 ((𝜑𝐶𝐵) → (𝐶(𝐾𝐵)𝐴 ↔ ((𝐶𝐵𝐴𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
2615anim1ci 616 . . . . . 6 ((𝜑𝐶𝐵) → (𝐶𝐵𝐴𝐵))
2726biantrurd 532 . . . . 5 ((𝜑𝐶𝐵) → ((𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)) ↔ ((𝐶𝐵𝐴𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
285adantr 480 . . . . . . 7 ((𝜑𝐶𝐵) → 𝐺 ∈ TarskiG)
2914adantr 480 . . . . . . 7 ((𝜑𝐶𝐵) → 𝐵𝑃)
307adantr 480 . . . . . . 7 ((𝜑𝐶𝐵) → 𝐶𝑃)
316adantr 480 . . . . . . 7 ((𝜑𝐶𝐵) → 𝐴𝑃)
322, 3, 4, 28, 29, 30, 31tgbtwncomb 28452 . . . . . 6 ((𝜑𝐶𝐵) → (𝐶 ∈ (𝐵𝐼𝐴) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
332, 3, 4, 28, 29, 31, 30tgbtwncomb 28452 . . . . . 6 ((𝜑𝐶𝐵) → (𝐴 ∈ (𝐵𝐼𝐶) ↔ 𝐴 ∈ (𝐶𝐼𝐵)))
3432, 33orbi12d 918 . . . . 5 ((𝜑𝐶𝐵) → ((𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))))
3525, 27, 343bitr2d 307 . . . 4 ((𝜑𝐶𝐵) → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))))
3635orbi1d 916 . . 3 ((𝜑𝐶𝐵) → ((𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
3720, 36mpbird 257 . 2 ((𝜑𝐶𝐵) → (𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)))
3811, 37pm2.61dane 3018 1 (𝜑 → (𝐶(𝐾𝐵)𝐴𝐵 ∈ (𝐴𝐼𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5125  cfv 6542  (class class class)co 7414  Basecbs 17230  distcds 17286  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397  hlGchlg 28563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-trkgc 28411  df-trkgb 28412  df-trkgcb 28413  df-trkg 28416  df-hlg 28564
This theorem is referenced by:  hlpasch  28719
  Copyright terms: Public domain W3C validator