MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnne Structured version   Visualization version   GIF version

Theorem tgbtwnne 28009
Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwntriv2.1 (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwntriv2.2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwncomb.3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwnne.1 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
tgbtwnne.2 (πœ‘ β†’ 𝐡 β‰  𝐴)
Assertion
Ref Expression
tgbtwnne (πœ‘ β†’ 𝐴 β‰  𝐢)

Proof of Theorem tgbtwnne
StepHypRef Expression
1 tkgeom.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
2 tkgeom.d . . . . 5 βˆ’ = (distβ€˜πΊ)
3 tkgeom.i . . . . 5 𝐼 = (Itvβ€˜πΊ)
4 tkgeom.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54adantr 480 . . . . 5 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐺 ∈ TarskiG)
6 tgbtwntriv2.1 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ 𝑃)
76adantr 480 . . . . 5 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐴 ∈ 𝑃)
8 tgbtwntriv2.2 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ 𝑃)
98adantr 480 . . . . 5 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐡 ∈ 𝑃)
10 tgbtwnne.1 . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
1110adantr 480 . . . . . 6 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐡 ∈ (𝐴𝐼𝐢))
12 simpr 484 . . . . . . 7 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐴 = 𝐢)
1312oveq2d 7428 . . . . . 6 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ (𝐴𝐼𝐴) = (𝐴𝐼𝐢))
1411, 13eleqtrrd 2835 . . . . 5 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐡 ∈ (𝐴𝐼𝐴))
151, 2, 3, 5, 7, 9, 14axtgbtwnid 27985 . . . 4 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐴 = 𝐡)
1615eqcomd 2737 . . 3 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐡 = 𝐴)
17 tgbtwnne.2 . . . . 5 (πœ‘ β†’ 𝐡 β‰  𝐴)
1817adantr 480 . . . 4 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐡 β‰  𝐴)
1918neneqd 2944 . . 3 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ Β¬ 𝐡 = 𝐴)
2016, 19pm2.65da 814 . 2 (πœ‘ β†’ Β¬ 𝐴 = 𝐢)
2120neqned 2946 1 (πœ‘ β†’ 𝐴 β‰  𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27946  Itvcitv 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-trkgb 27968  df-trkg 27972
This theorem is referenced by:  mideulem2  28253  opphllem  28254  outpasch  28274  lnopp2hpgb  28282  lmieu  28303  dfcgra2  28349
  Copyright terms: Public domain W3C validator