Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwnne | Structured version Visualization version GIF version |
Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwncomb.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnne.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
tgbtwnne.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Ref | Expression |
---|---|
tgbtwnne | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
6 | tgbtwntriv2.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
8 | tgbtwntriv2.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ 𝑃) |
10 | tgbtwnne.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
11 | 10 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶)) |
12 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
13 | 12 | oveq2d 7229 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶)) |
14 | 11, 13 | eleqtrrd 2841 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐴)) |
15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 26557 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐵) |
16 | 15 | eqcomd 2743 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐴) |
17 | tgbtwnne.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
18 | 17 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ≠ 𝐴) |
19 | 18 | neneqd 2945 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ¬ 𝐵 = 𝐴) |
20 | 16, 19 | pm2.65da 817 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐶) |
21 | 20 | neqned 2947 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 distcds 16811 TarskiGcstrkg 26521 Itvcitv 26527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 df-trkgb 26540 df-trkg 26544 |
This theorem is referenced by: mideulem2 26825 opphllem 26826 outpasch 26846 lnopp2hpgb 26854 lmieu 26875 dfcgra2 26921 |
Copyright terms: Public domain | W3C validator |