MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnne Structured version   Visualization version   GIF version

Theorem tgbtwnne 26755
Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncomb.3 (𝜑𝐶𝑃)
tgbtwnne.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnne.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
tgbtwnne (𝜑𝐴𝐶)

Proof of Theorem tgbtwnne
StepHypRef Expression
1 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . . 5 = (dist‘𝐺)
3 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.1 . . . . . 6 (𝜑𝐴𝑃)
76adantr 480 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
8 tgbtwntriv2.2 . . . . . 6 (𝜑𝐵𝑃)
98adantr 480 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐵𝑃)
10 tgbtwnne.1 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
1110adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
12 simpr 484 . . . . . . 7 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1312oveq2d 7271 . . . . . 6 ((𝜑𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶))
1411, 13eleqtrrd 2842 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐴))
151, 2, 3, 5, 7, 9, 14axtgbtwnid 26731 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐵)
1615eqcomd 2744 . . 3 ((𝜑𝐴 = 𝐶) → 𝐵 = 𝐴)
17 tgbtwnne.2 . . . . 5 (𝜑𝐵𝐴)
1817adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐵𝐴)
1918neneqd 2947 . . 3 ((𝜑𝐴 = 𝐶) → ¬ 𝐵 = 𝐴)
2016, 19pm2.65da 813 . 2 (𝜑 → ¬ 𝐴 = 𝐶)
2120neqned 2949 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgb 26714  df-trkg 26718
This theorem is referenced by:  mideulem2  26999  opphllem  27000  outpasch  27020  lnopp2hpgb  27028  lmieu  27049  dfcgra2  27095
  Copyright terms: Public domain W3C validator