MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnne Structured version   Visualization version   GIF version

Theorem tgbtwnne 28468
Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncomb.3 (𝜑𝐶𝑃)
tgbtwnne.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnne.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
tgbtwnne (𝜑𝐴𝐶)

Proof of Theorem tgbtwnne
StepHypRef Expression
1 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . . 5 = (dist‘𝐺)
3 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.1 . . . . . 6 (𝜑𝐴𝑃)
76adantr 480 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
8 tgbtwntriv2.2 . . . . . 6 (𝜑𝐵𝑃)
98adantr 480 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐵𝑃)
10 tgbtwnne.1 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
1110adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
12 simpr 484 . . . . . . 7 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1312oveq2d 7362 . . . . . 6 ((𝜑𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶))
1411, 13eleqtrrd 2834 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐴))
151, 2, 3, 5, 7, 9, 14axtgbtwnid 28444 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐵)
1615eqcomd 2737 . . 3 ((𝜑𝐴 = 𝐶) → 𝐵 = 𝐴)
17 tgbtwnne.2 . . . . 5 (𝜑𝐵𝐴)
1817adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐵𝐴)
1918neneqd 2933 . . 3 ((𝜑𝐴 = 𝐶) → ¬ 𝐵 = 𝐴)
2016, 19pm2.65da 816 . 2 (𝜑 → ¬ 𝐴 = 𝐶)
2120neqned 2935 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-trkgb 28427  df-trkg 28431
This theorem is referenced by:  mideulem2  28712  opphllem  28713  outpasch  28733  lnopp2hpgb  28741  lmieu  28762  dfcgra2  28808
  Copyright terms: Public domain W3C validator