| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnne | Structured version Visualization version GIF version | ||
| Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwncomb.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnne.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| tgbtwnne.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Ref | Expression |
|---|---|
| tgbtwnne | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwntriv2.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
| 8 | tgbtwntriv2.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ 𝑃) |
| 10 | tgbtwnne.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
| 13 | 12 | oveq2d 7421 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶)) |
| 14 | 11, 13 | eleqtrrd 2837 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐴)) |
| 15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 28445 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐵) |
| 16 | 15 | eqcomd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐴) |
| 17 | tgbtwnne.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ≠ 𝐴) |
| 19 | 18 | neneqd 2937 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ¬ 𝐵 = 𝐴) |
| 20 | 16, 19 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐶) |
| 21 | 20 | neqned 2939 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 distcds 17280 TarskiGcstrkg 28406 Itvcitv 28412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-trkgb 28428 df-trkg 28432 |
| This theorem is referenced by: mideulem2 28713 opphllem 28714 outpasch 28734 lnopp2hpgb 28742 lmieu 28763 dfcgra2 28809 |
| Copyright terms: Public domain | W3C validator |