Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwnne | Structured version Visualization version GIF version |
Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwncomb.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnne.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
tgbtwnne.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Ref | Expression |
---|---|
tgbtwnne | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
6 | tgbtwntriv2.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
8 | tgbtwntriv2.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ 𝑃) |
10 | tgbtwnne.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶)) |
12 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
13 | 12 | oveq2d 7287 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶)) |
14 | 11, 13 | eleqtrrd 2844 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐴)) |
15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 26825 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐵) |
16 | 15 | eqcomd 2746 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐴) |
17 | tgbtwnne.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
18 | 17 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ≠ 𝐴) |
19 | 18 | neneqd 2950 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ¬ 𝐵 = 𝐴) |
20 | 16, 19 | pm2.65da 814 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐶) |
21 | 20 | neqned 2952 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 distcds 16969 TarskiGcstrkg 26786 Itvcitv 26792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-ov 7274 df-trkgb 26808 df-trkg 26812 |
This theorem is referenced by: mideulem2 27093 opphllem 27094 outpasch 27114 lnopp2hpgb 27122 lmieu 27143 dfcgra2 27189 |
Copyright terms: Public domain | W3C validator |