MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgsegconeq Structured version   Visualization version   GIF version

Theorem tgsegconeq 26751
Description: Two points that satisfy the conclusion of axtgsegcon 26729 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrextend.a (𝜑𝐴𝑃)
tgcgrextend.b (𝜑𝐵𝑃)
tgcgrextend.c (𝜑𝐶𝑃)
tgcgrextend.d (𝜑𝐷𝑃)
tgcgrextend.e (𝜑𝐸𝑃)
tgcgrextend.f (𝜑𝐹𝑃)
tgsegconeq.1 (𝜑𝐷𝐴)
tgsegconeq.2 (𝜑𝐴 ∈ (𝐷𝐼𝐸))
tgsegconeq.3 (𝜑𝐴 ∈ (𝐷𝐼𝐹))
tgsegconeq.4 (𝜑 → (𝐴 𝐸) = (𝐵 𝐶))
tgsegconeq.5 (𝜑 → (𝐴 𝐹) = (𝐵 𝐶))
Assertion
Ref Expression
tgsegconeq (𝜑𝐸 = 𝐹)

Proof of Theorem tgsegconeq
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgcgrextend.e . 2 (𝜑𝐸𝑃)
6 tgcgrextend.f . 2 (𝜑𝐹𝑃)
7 tgcgrextend.d . . . 4 (𝜑𝐷𝑃)
8 tgcgrextend.a . . . 4 (𝜑𝐴𝑃)
9 tgsegconeq.1 . . . 4 (𝜑𝐷𝐴)
10 tgsegconeq.2 . . . 4 (𝜑𝐴 ∈ (𝐷𝐼𝐸))
11 eqidd 2739 . . . 4 (𝜑 → (𝐷 𝐴) = (𝐷 𝐴))
12 eqidd 2739 . . . 4 (𝜑 → (𝐴 𝐸) = (𝐴 𝐸))
13 tgsegconeq.3 . . . . 5 (𝜑𝐴 ∈ (𝐷𝐼𝐹))
14 tgsegconeq.4 . . . . . 6 (𝜑 → (𝐴 𝐸) = (𝐵 𝐶))
15 tgsegconeq.5 . . . . . 6 (𝜑 → (𝐴 𝐹) = (𝐵 𝐶))
1614, 15eqtr4d 2781 . . . . 5 (𝜑 → (𝐴 𝐸) = (𝐴 𝐹))
171, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16tgcgrextend 26750 . . . 4 (𝜑 → (𝐷 𝐸) = (𝐷 𝐹))
181, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16axtg5seg 26730 . . 3 (𝜑 → (𝐸 𝐸) = (𝐸 𝐹))
1918eqcomd 2744 . 2 (𝜑 → (𝐸 𝐹) = (𝐸 𝐸))
201, 2, 3, 4, 5, 6, 5, 19axtgcgrid 26728 1 (𝜑𝐸 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgc 26713  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgbtwnouttr2  26760  tgcgrxfr  26783  tgbtwnconn1lem1  26837  hlcgreulem  26882  mirreu3  26919
  Copyright terms: Public domain W3C validator