| Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | ||
| Mirrors > Home > MPE Home > Th. List > tgsegconeq | Structured version Visualization version GIF version | ||
| Description: Two points that satisfy the conclusion of axtgsegcon 28472 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) | 
| Ref | Expression | 
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) | 
| tkgeom.d | ⊢ − = (dist‘𝐺) | 
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| tgcgrextend.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| tgcgrextend.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| tgcgrextend.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| tgcgrextend.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) | 
| tgcgrextend.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) | 
| tgcgrextend.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) | 
| tgsegconeq.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) | 
| tgsegconeq.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) | 
| tgsegconeq.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) | 
| tgsegconeq.4 | ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) | 
| tgsegconeq.5 | ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) | 
| Ref | Expression | 
|---|---|
| tgsegconeq | ⊢ (𝜑 → 𝐸 = 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgcgrextend.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 6 | tgcgrextend.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 7 | tgcgrextend.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 8 | tgcgrextend.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | tgsegconeq.1 | . . . 4 ⊢ (𝜑 → 𝐷 ≠ 𝐴) | |
| 10 | tgsegconeq.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) | |
| 11 | eqidd 2738 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐴) = (𝐷 − 𝐴)) | |
| 12 | eqidd 2738 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐸)) | |
| 13 | tgsegconeq.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) | |
| 14 | tgsegconeq.4 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) | |
| 15 | tgsegconeq.5 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) | |
| 16 | 14, 15 | eqtr4d 2780 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐹)) | 
| 17 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16 | tgcgrextend 28493 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐸) = (𝐷 − 𝐹)) | 
| 18 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16 | axtg5seg 28473 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐸) = (𝐸 − 𝐹)) | 
| 19 | 18 | eqcomd 2743 | . 2 ⊢ (𝜑 → (𝐸 − 𝐹) = (𝐸 − 𝐸)) | 
| 20 | 1, 2, 3, 4, 5, 6, 5, 19 | axtgcgrid 28471 | 1 ⊢ (𝜑 → 𝐸 = 𝐹) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 distcds 17306 TarskiGcstrkg 28435 Itvcitv 28441 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-trkgc 28456 df-trkgcb 28458 df-trkg 28461 | 
| This theorem is referenced by: tgbtwnouttr2 28503 tgcgrxfr 28526 tgbtwnconn1lem1 28580 hlcgreulem 28625 mirreu3 28662 | 
| Copyright terms: Public domain | W3C validator |