Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgsegconeq | Structured version Visualization version GIF version |
Description: Two points that satisfy the conclusion of axtgsegcon 26357 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrextend.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrextend.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrextend.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrextend.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrextend.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tgcgrextend.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tgsegconeq.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
tgsegconeq.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) |
tgsegconeq.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) |
tgsegconeq.4 | ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) |
tgsegconeq.5 | ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) |
Ref | Expression |
---|---|
tgsegconeq | ⊢ (𝜑 → 𝐸 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgcgrextend.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
6 | tgcgrextend.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
7 | tgcgrextend.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | tgcgrextend.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | tgsegconeq.1 | . . . 4 ⊢ (𝜑 → 𝐷 ≠ 𝐴) | |
10 | tgsegconeq.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) | |
11 | eqidd 2759 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐴) = (𝐷 − 𝐴)) | |
12 | eqidd 2759 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐸)) | |
13 | tgsegconeq.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) | |
14 | tgsegconeq.4 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) | |
15 | tgsegconeq.5 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) | |
16 | 14, 15 | eqtr4d 2796 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐹)) |
17 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16 | tgcgrextend 26378 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐸) = (𝐷 − 𝐹)) |
18 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16 | axtg5seg 26358 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐸) = (𝐸 − 𝐹)) |
19 | 18 | eqcomd 2764 | . 2 ⊢ (𝜑 → (𝐸 − 𝐹) = (𝐸 − 𝐸)) |
20 | 1, 2, 3, 4, 5, 6, 5, 19 | axtgcgrid 26356 | 1 ⊢ (𝜑 → 𝐸 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 distcds 16632 TarskiGcstrkg 26323 Itvcitv 26329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-nul 5176 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-ov 7153 df-trkgc 26341 df-trkgcb 26343 df-trkg 26346 |
This theorem is referenced by: tgbtwnouttr2 26388 tgcgrxfr 26411 tgbtwnconn1lem1 26465 hlcgreulem 26510 mirreu3 26547 |
Copyright terms: Public domain | W3C validator |