| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgsegconeq | Structured version Visualization version GIF version | ||
| Description: Two points that satisfy the conclusion of axtgsegcon 28398 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrextend.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrextend.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrextend.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrextend.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrextend.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| tgcgrextend.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| tgsegconeq.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
| tgsegconeq.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) |
| tgsegconeq.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) |
| tgsegconeq.4 | ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) |
| tgsegconeq.5 | ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) |
| Ref | Expression |
|---|---|
| tgsegconeq | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgcgrextend.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 6 | tgcgrextend.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 7 | tgcgrextend.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 8 | tgcgrextend.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | tgsegconeq.1 | . . . 4 ⊢ (𝜑 → 𝐷 ≠ 𝐴) | |
| 10 | tgsegconeq.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) | |
| 11 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐴) = (𝐷 − 𝐴)) | |
| 12 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐸)) | |
| 13 | tgsegconeq.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) | |
| 14 | tgsegconeq.4 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) | |
| 15 | tgsegconeq.5 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) | |
| 16 | 14, 15 | eqtr4d 2768 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐹)) |
| 17 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16 | tgcgrextend 28419 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐸) = (𝐷 − 𝐹)) |
| 18 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16 | axtg5seg 28399 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐸) = (𝐸 − 𝐹)) |
| 19 | 18 | eqcomd 2736 | . 2 ⊢ (𝜑 → (𝐸 − 𝐹) = (𝐸 − 𝐸)) |
| 20 | 1, 2, 3, 4, 5, 6, 5, 19 | axtgcgrid 28397 | 1 ⊢ (𝜑 → 𝐸 = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-trkgc 28382 df-trkgcb 28384 df-trkg 28387 |
| This theorem is referenced by: tgbtwnouttr2 28429 tgcgrxfr 28452 tgbtwnconn1lem1 28506 hlcgreulem 28551 mirreu3 28588 |
| Copyright terms: Public domain | W3C validator |