MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgsegconeq Structured version   Visualization version   GIF version

Theorem tgsegconeq 28494
Description: Two points that satisfy the conclusion of axtgsegcon 28472 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrextend.a (𝜑𝐴𝑃)
tgcgrextend.b (𝜑𝐵𝑃)
tgcgrextend.c (𝜑𝐶𝑃)
tgcgrextend.d (𝜑𝐷𝑃)
tgcgrextend.e (𝜑𝐸𝑃)
tgcgrextend.f (𝜑𝐹𝑃)
tgsegconeq.1 (𝜑𝐷𝐴)
tgsegconeq.2 (𝜑𝐴 ∈ (𝐷𝐼𝐸))
tgsegconeq.3 (𝜑𝐴 ∈ (𝐷𝐼𝐹))
tgsegconeq.4 (𝜑 → (𝐴 𝐸) = (𝐵 𝐶))
tgsegconeq.5 (𝜑 → (𝐴 𝐹) = (𝐵 𝐶))
Assertion
Ref Expression
tgsegconeq (𝜑𝐸 = 𝐹)

Proof of Theorem tgsegconeq
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgcgrextend.e . 2 (𝜑𝐸𝑃)
6 tgcgrextend.f . 2 (𝜑𝐹𝑃)
7 tgcgrextend.d . . . 4 (𝜑𝐷𝑃)
8 tgcgrextend.a . . . 4 (𝜑𝐴𝑃)
9 tgsegconeq.1 . . . 4 (𝜑𝐷𝐴)
10 tgsegconeq.2 . . . 4 (𝜑𝐴 ∈ (𝐷𝐼𝐸))
11 eqidd 2738 . . . 4 (𝜑 → (𝐷 𝐴) = (𝐷 𝐴))
12 eqidd 2738 . . . 4 (𝜑 → (𝐴 𝐸) = (𝐴 𝐸))
13 tgsegconeq.3 . . . . 5 (𝜑𝐴 ∈ (𝐷𝐼𝐹))
14 tgsegconeq.4 . . . . . 6 (𝜑 → (𝐴 𝐸) = (𝐵 𝐶))
15 tgsegconeq.5 . . . . . 6 (𝜑 → (𝐴 𝐹) = (𝐵 𝐶))
1614, 15eqtr4d 2780 . . . . 5 (𝜑 → (𝐴 𝐸) = (𝐴 𝐹))
171, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16tgcgrextend 28493 . . . 4 (𝜑 → (𝐷 𝐸) = (𝐷 𝐹))
181, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16axtg5seg 28473 . . 3 (𝜑 → (𝐸 𝐸) = (𝐸 𝐹))
1918eqcomd 2743 . 2 (𝜑 → (𝐸 𝐹) = (𝐸 𝐸))
201, 2, 3, 4, 5, 6, 5, 19axtgcgrid 28471 1 (𝜑𝐸 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-trkgc 28456  df-trkgcb 28458  df-trkg 28461
This theorem is referenced by:  tgbtwnouttr2  28503  tgcgrxfr  28526  tgbtwnconn1lem1  28580  hlcgreulem  28625  mirreu3  28662
  Copyright terms: Public domain W3C validator