Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlcgreulem | Structured version Visualization version GIF version |
Description: Lemma for hlcgreu 26709. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
hlcgrex.m | ⊢ − = (dist‘𝐺) |
hlcgrex.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
hlcgrex.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
hlcgreulem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
hlcgreulem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
hlcgreulem.1 | ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) |
hlcgreulem.2 | ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) |
hlcgreulem.3 | ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) |
hlcgreulem.4 | ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) |
Ref | Expression |
---|---|
hlcgreulem | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | hlcgrex.m | . . 3 ⊢ − = (dist‘𝐺) | |
3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ 𝑃) |
8 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐵 ∈ 𝑃) |
10 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐶 ∈ 𝑃) |
12 | simplr 769 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑦 ∈ 𝑃) | |
13 | hlcgreulem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
14 | 13 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑋 ∈ 𝑃) |
15 | hlcgreulem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
16 | 15 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑌 ∈ 𝑃) |
17 | simprr 773 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ≠ 𝑦) | |
18 | 17 | necomd 2996 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑦 ≠ 𝐴) |
19 | ishlg.k | . . . . 5 ⊢ 𝐾 = (hlG‘𝐺) | |
20 | hltr.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
21 | 20 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷 ∈ 𝑃) |
22 | hlcgreulem.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) | |
23 | 1, 3, 19, 13, 20, 6, 4, 22 | hlcomd 26695 | . . . . . 6 ⊢ (𝜑 → 𝐷(𝐾‘𝐴)𝑋) |
24 | 23 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷(𝐾‘𝐴)𝑋) |
25 | simprl 771 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝐷𝐼𝑦)) | |
26 | 1, 3, 19, 21, 14, 12, 5, 7, 24, 25 | btwnhl 26705 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑋𝐼𝑦)) |
27 | 1, 2, 3, 5, 14, 7, 12, 26 | tgbtwncom 26579 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑦𝐼𝑋)) |
28 | hlcgreulem.2 | . . . . . . 7 ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) | |
29 | 1, 3, 19, 15, 20, 6, 4, 28 | hlcomd 26695 | . . . . . 6 ⊢ (𝜑 → 𝐷(𝐾‘𝐴)𝑌) |
30 | 29 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷(𝐾‘𝐴)𝑌) |
31 | 1, 3, 19, 21, 16, 12, 5, 7, 30, 25 | btwnhl 26705 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑌𝐼𝑦)) |
32 | 1, 2, 3, 5, 16, 7, 12, 31 | tgbtwncom 26579 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑦𝐼𝑌)) |
33 | hlcgreulem.3 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) | |
34 | 33 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → (𝐴 − 𝑋) = (𝐵 − 𝐶)) |
35 | hlcgreulem.4 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) | |
36 | 35 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → (𝐴 − 𝑌) = (𝐵 − 𝐶)) |
37 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 18, 27, 32, 34, 36 | tgsegconeq 26577 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑋 = 𝑌) |
38 | 1 | fvexi 6731 | . . . . 5 ⊢ 𝑃 ∈ V |
39 | 38 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ V) |
40 | hlcgrex.2 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
41 | 39, 8, 10, 40 | nehash2 14040 | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) |
42 | 1, 2, 3, 4, 20, 6, 41 | tgbtwndiff 26597 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) |
43 | 37, 42 | r19.29a 3208 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 Vcvv 3408 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 distcds 16811 TarskiGcstrkg 26521 Itvcitv 26527 hlGchlg 26691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oadd 8206 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-dju 9517 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-xnn0 12163 df-z 12177 df-uz 12439 df-fz 13096 df-hash 13897 df-trkgc 26539 df-trkgb 26540 df-trkgcb 26541 df-trkg 26544 df-hlg 26692 |
This theorem is referenced by: hlcgreu 26709 iscgra1 26901 |
Copyright terms: Public domain | W3C validator |