![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcgreulem | Structured version Visualization version GIF version |
Description: Lemma for hlcgreu 28641. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
hlcgrex.m | ⊢ − = (dist‘𝐺) |
hlcgrex.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
hlcgrex.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
hlcgreulem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
hlcgreulem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
hlcgreulem.1 | ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) |
hlcgreulem.2 | ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) |
hlcgreulem.3 | ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) |
hlcgreulem.4 | ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) |
Ref | Expression |
---|---|
hlcgreulem | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | hlcgrex.m | . . 3 ⊢ − = (dist‘𝐺) | |
3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ 𝑃) |
8 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐵 ∈ 𝑃) |
10 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐶 ∈ 𝑃) |
12 | simplr 769 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑦 ∈ 𝑃) | |
13 | hlcgreulem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
14 | 13 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑋 ∈ 𝑃) |
15 | hlcgreulem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
16 | 15 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑌 ∈ 𝑃) |
17 | simprr 773 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ≠ 𝑦) | |
18 | 17 | necomd 2994 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑦 ≠ 𝐴) |
19 | ishlg.k | . . . . 5 ⊢ 𝐾 = (hlG‘𝐺) | |
20 | hltr.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
21 | 20 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷 ∈ 𝑃) |
22 | hlcgreulem.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) | |
23 | 1, 3, 19, 13, 20, 6, 4, 22 | hlcomd 28627 | . . . . . 6 ⊢ (𝜑 → 𝐷(𝐾‘𝐴)𝑋) |
24 | 23 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷(𝐾‘𝐴)𝑋) |
25 | simprl 771 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝐷𝐼𝑦)) | |
26 | 1, 3, 19, 21, 14, 12, 5, 7, 24, 25 | btwnhl 28637 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑋𝐼𝑦)) |
27 | 1, 2, 3, 5, 14, 7, 12, 26 | tgbtwncom 28511 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑦𝐼𝑋)) |
28 | hlcgreulem.2 | . . . . . . 7 ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) | |
29 | 1, 3, 19, 15, 20, 6, 4, 28 | hlcomd 28627 | . . . . . 6 ⊢ (𝜑 → 𝐷(𝐾‘𝐴)𝑌) |
30 | 29 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷(𝐾‘𝐴)𝑌) |
31 | 1, 3, 19, 21, 16, 12, 5, 7, 30, 25 | btwnhl 28637 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑌𝐼𝑦)) |
32 | 1, 2, 3, 5, 16, 7, 12, 31 | tgbtwncom 28511 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑦𝐼𝑌)) |
33 | hlcgreulem.3 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) | |
34 | 33 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → (𝐴 − 𝑋) = (𝐵 − 𝐶)) |
35 | hlcgreulem.4 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) | |
36 | 35 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → (𝐴 − 𝑌) = (𝐵 − 𝐶)) |
37 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 18, 27, 32, 34, 36 | tgsegconeq 28509 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑋 = 𝑌) |
38 | 1 | fvexi 6921 | . . . . 5 ⊢ 𝑃 ∈ V |
39 | 38 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ V) |
40 | hlcgrex.2 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
41 | 39, 8, 10, 40 | nehash2 14510 | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) |
42 | 1, 2, 3, 4, 20, 6, 41 | tgbtwndiff 28529 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) |
43 | 37, 42 | r19.29a 3160 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 distcds 17307 TarskiGcstrkg 28450 Itvcitv 28456 hlGchlg 28623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 df-trkgc 28471 df-trkgb 28472 df-trkgcb 28473 df-trkg 28476 df-hlg 28624 |
This theorem is referenced by: hlcgreu 28641 iscgra1 28833 |
Copyright terms: Public domain | W3C validator |