![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcgreulem | Structured version Visualization version GIF version |
Description: Lemma for hlcgreu 26106. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
hlcgrex.m | ⊢ − = (dist‘𝐺) |
hlcgrex.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
hlcgrex.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
hlcgreulem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
hlcgreulem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
hlcgreulem.1 | ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) |
hlcgreulem.2 | ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) |
hlcgreulem.3 | ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) |
hlcgreulem.4 | ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) |
Ref | Expression |
---|---|
hlcgreulem | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | hlcgrex.m | . . 3 ⊢ − = (dist‘𝐺) | |
3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad2antrr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ 𝑃) |
8 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad2antrr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐵 ∈ 𝑃) |
10 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | ad2antrr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐶 ∈ 𝑃) |
12 | simplr 756 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑦 ∈ 𝑃) | |
13 | hlcgreulem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
14 | 13 | ad2antrr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑋 ∈ 𝑃) |
15 | hlcgreulem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
16 | 15 | ad2antrr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑌 ∈ 𝑃) |
17 | simprr 760 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ≠ 𝑦) | |
18 | 17 | necomd 3023 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑦 ≠ 𝐴) |
19 | ishlg.k | . . . . 5 ⊢ 𝐾 = (hlG‘𝐺) | |
20 | hltr.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
21 | 20 | ad2antrr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷 ∈ 𝑃) |
22 | hlcgreulem.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝐷) | |
23 | 1, 3, 19, 13, 20, 6, 4, 22 | hlcomd 26092 | . . . . . 6 ⊢ (𝜑 → 𝐷(𝐾‘𝐴)𝑋) |
24 | 23 | ad2antrr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷(𝐾‘𝐴)𝑋) |
25 | simprl 758 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝐷𝐼𝑦)) | |
26 | 1, 3, 19, 21, 14, 12, 5, 7, 24, 25 | btwnhl 26102 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑋𝐼𝑦)) |
27 | 1, 2, 3, 5, 14, 7, 12, 26 | tgbtwncom 25976 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑦𝐼𝑋)) |
28 | hlcgreulem.2 | . . . . . . 7 ⊢ (𝜑 → 𝑌(𝐾‘𝐴)𝐷) | |
29 | 1, 3, 19, 15, 20, 6, 4, 28 | hlcomd 26092 | . . . . . 6 ⊢ (𝜑 → 𝐷(𝐾‘𝐴)𝑌) |
30 | 29 | ad2antrr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐷(𝐾‘𝐴)𝑌) |
31 | 1, 3, 19, 21, 16, 12, 5, 7, 30, 25 | btwnhl 26102 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑌𝐼𝑦)) |
32 | 1, 2, 3, 5, 16, 7, 12, 31 | tgbtwncom 25976 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝐴 ∈ (𝑦𝐼𝑌)) |
33 | hlcgreulem.3 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝐶)) | |
34 | 33 | ad2antrr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → (𝐴 − 𝑋) = (𝐵 − 𝐶)) |
35 | hlcgreulem.4 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝑌) = (𝐵 − 𝐶)) | |
36 | 35 | ad2antrr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → (𝐴 − 𝑌) = (𝐵 − 𝐶)) |
37 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 18, 27, 32, 34, 36 | tgsegconeq 25974 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) → 𝑋 = 𝑌) |
38 | 1 | fvexi 6513 | . . . . 5 ⊢ 𝑃 ∈ V |
39 | 38 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ V) |
40 | hlcgrex.2 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
41 | 39, 8, 10, 40 | nehash2 13643 | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) |
42 | 1, 2, 3, 4, 20, 6, 41 | tgbtwndiff 25994 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴 ≠ 𝑦)) |
43 | 37, 42 | r19.29a 3235 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2968 Vcvv 3416 class class class wbr 4929 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 distcds 16430 TarskiGcstrkg 25918 Itvcitv 25924 hlGchlg 26088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-dju 9124 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-n0 11708 df-xnn0 11780 df-z 11794 df-uz 12059 df-fz 12709 df-hash 13506 df-trkgc 25936 df-trkgb 25937 df-trkgcb 25938 df-trkg 25941 df-hlg 26089 |
This theorem is referenced by: hlcgreu 26106 iscgra1 26298 |
Copyright terms: Public domain | W3C validator |