MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgreulem Structured version   Visualization version   GIF version

Theorem hlcgreulem 26105
Description: Lemma for hlcgreu 26106. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
hlcgreulem.x (𝜑𝑋𝑃)
hlcgreulem.y (𝜑𝑌𝑃)
hlcgreulem.1 (𝜑𝑋(𝐾𝐴)𝐷)
hlcgreulem.2 (𝜑𝑌(𝐾𝐴)𝐷)
hlcgreulem.3 (𝜑 → (𝐴 𝑋) = (𝐵 𝐶))
hlcgreulem.4 (𝜑 → (𝐴 𝑌) = (𝐵 𝐶))
Assertion
Ref Expression
hlcgreulem (𝜑𝑋 = 𝑌)

Proof of Theorem hlcgreulem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 hlcgrex.m . . 3 = (dist‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 713 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐺 ∈ TarskiG)
6 ishlg.a . . . 4 (𝜑𝐴𝑃)
76ad2antrr 713 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴𝑃)
8 ishlg.b . . . 4 (𝜑𝐵𝑃)
98ad2antrr 713 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐵𝑃)
10 ishlg.c . . . 4 (𝜑𝐶𝑃)
1110ad2antrr 713 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐶𝑃)
12 simplr 756 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑦𝑃)
13 hlcgreulem.x . . . 4 (𝜑𝑋𝑃)
1413ad2antrr 713 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑋𝑃)
15 hlcgreulem.y . . . 4 (𝜑𝑌𝑃)
1615ad2antrr 713 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑌𝑃)
17 simprr 760 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴𝑦)
1817necomd 3023 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑦𝐴)
19 ishlg.k . . . . 5 𝐾 = (hlG‘𝐺)
20 hltr.d . . . . . 6 (𝜑𝐷𝑃)
2120ad2antrr 713 . . . . 5 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐷𝑃)
22 hlcgreulem.1 . . . . . . 7 (𝜑𝑋(𝐾𝐴)𝐷)
231, 3, 19, 13, 20, 6, 4, 22hlcomd 26092 . . . . . 6 (𝜑𝐷(𝐾𝐴)𝑋)
2423ad2antrr 713 . . . . 5 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐷(𝐾𝐴)𝑋)
25 simprl 758 . . . . 5 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝐷𝐼𝑦))
261, 3, 19, 21, 14, 12, 5, 7, 24, 25btwnhl 26102 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝑋𝐼𝑦))
271, 2, 3, 5, 14, 7, 12, 26tgbtwncom 25976 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝑦𝐼𝑋))
28 hlcgreulem.2 . . . . . . 7 (𝜑𝑌(𝐾𝐴)𝐷)
291, 3, 19, 15, 20, 6, 4, 28hlcomd 26092 . . . . . 6 (𝜑𝐷(𝐾𝐴)𝑌)
3029ad2antrr 713 . . . . 5 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐷(𝐾𝐴)𝑌)
311, 3, 19, 21, 16, 12, 5, 7, 30, 25btwnhl 26102 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝑌𝐼𝑦))
321, 2, 3, 5, 16, 7, 12, 31tgbtwncom 25976 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝑦𝐼𝑌))
33 hlcgreulem.3 . . . 4 (𝜑 → (𝐴 𝑋) = (𝐵 𝐶))
3433ad2antrr 713 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → (𝐴 𝑋) = (𝐵 𝐶))
35 hlcgreulem.4 . . . 4 (𝜑 → (𝐴 𝑌) = (𝐵 𝐶))
3635ad2antrr 713 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → (𝐴 𝑌) = (𝐵 𝐶))
371, 2, 3, 5, 7, 9, 11, 12, 14, 16, 18, 27, 32, 34, 36tgsegconeq 25974 . 2 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑋 = 𝑌)
381fvexi 6513 . . . . 5 𝑃 ∈ V
3938a1i 11 . . . 4 (𝜑𝑃 ∈ V)
40 hlcgrex.2 . . . 4 (𝜑𝐵𝐶)
4139, 8, 10, 40nehash2 13643 . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
421, 2, 3, 4, 20, 6, 41tgbtwndiff 25994 . 2 (𝜑 → ∃𝑦𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
4337, 42r19.29a 3235 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2968  Vcvv 3416   class class class wbr 4929  cfv 6188  (class class class)co 6976  Basecbs 16339  distcds 16430  TarskiGcstrkg 25918  Itvcitv 25924  hlGchlg 26088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-fz 12709  df-hash 13506  df-trkgc 25936  df-trkgb 25937  df-trkgcb 25938  df-trkg 25941  df-hlg 26089
This theorem is referenced by:  hlcgreu  26106  iscgra1  26298
  Copyright terms: Public domain W3C validator