MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgreulem Structured version   Visualization version   GIF version

Theorem hlcgreulem 28551
Description: Lemma for hlcgreu 28552. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
hlcgreulem.x (𝜑𝑋𝑃)
hlcgreulem.y (𝜑𝑌𝑃)
hlcgreulem.1 (𝜑𝑋(𝐾𝐴)𝐷)
hlcgreulem.2 (𝜑𝑌(𝐾𝐴)𝐷)
hlcgreulem.3 (𝜑 → (𝐴 𝑋) = (𝐵 𝐶))
hlcgreulem.4 (𝜑 → (𝐴 𝑌) = (𝐵 𝐶))
Assertion
Ref Expression
hlcgreulem (𝜑𝑋 = 𝑌)

Proof of Theorem hlcgreulem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 hlcgrex.m . . 3 = (dist‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐺 ∈ TarskiG)
6 ishlg.a . . . 4 (𝜑𝐴𝑃)
76ad2antrr 726 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴𝑃)
8 ishlg.b . . . 4 (𝜑𝐵𝑃)
98ad2antrr 726 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐵𝑃)
10 ishlg.c . . . 4 (𝜑𝐶𝑃)
1110ad2antrr 726 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐶𝑃)
12 simplr 768 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑦𝑃)
13 hlcgreulem.x . . . 4 (𝜑𝑋𝑃)
1413ad2antrr 726 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑋𝑃)
15 hlcgreulem.y . . . 4 (𝜑𝑌𝑃)
1615ad2antrr 726 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑌𝑃)
17 simprr 772 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴𝑦)
1817necomd 2981 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑦𝐴)
19 ishlg.k . . . . 5 𝐾 = (hlG‘𝐺)
20 hltr.d . . . . . 6 (𝜑𝐷𝑃)
2120ad2antrr 726 . . . . 5 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐷𝑃)
22 hlcgreulem.1 . . . . . . 7 (𝜑𝑋(𝐾𝐴)𝐷)
231, 3, 19, 13, 20, 6, 4, 22hlcomd 28538 . . . . . 6 (𝜑𝐷(𝐾𝐴)𝑋)
2423ad2antrr 726 . . . . 5 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐷(𝐾𝐴)𝑋)
25 simprl 770 . . . . 5 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝐷𝐼𝑦))
261, 3, 19, 21, 14, 12, 5, 7, 24, 25btwnhl 28548 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝑋𝐼𝑦))
271, 2, 3, 5, 14, 7, 12, 26tgbtwncom 28422 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝑦𝐼𝑋))
28 hlcgreulem.2 . . . . . . 7 (𝜑𝑌(𝐾𝐴)𝐷)
291, 3, 19, 15, 20, 6, 4, 28hlcomd 28538 . . . . . 6 (𝜑𝐷(𝐾𝐴)𝑌)
3029ad2antrr 726 . . . . 5 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐷(𝐾𝐴)𝑌)
311, 3, 19, 21, 16, 12, 5, 7, 30, 25btwnhl 28548 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝑌𝐼𝑦))
321, 2, 3, 5, 16, 7, 12, 31tgbtwncom 28422 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴 ∈ (𝑦𝐼𝑌))
33 hlcgreulem.3 . . . 4 (𝜑 → (𝐴 𝑋) = (𝐵 𝐶))
3433ad2antrr 726 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → (𝐴 𝑋) = (𝐵 𝐶))
35 hlcgreulem.4 . . . 4 (𝜑 → (𝐴 𝑌) = (𝐵 𝐶))
3635ad2antrr 726 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → (𝐴 𝑌) = (𝐵 𝐶))
371, 2, 3, 5, 7, 9, 11, 12, 14, 16, 18, 27, 32, 34, 36tgsegconeq 28420 . 2 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑋 = 𝑌)
381fvexi 6875 . . . . 5 𝑃 ∈ V
3938a1i 11 . . . 4 (𝜑𝑃 ∈ V)
40 hlcgrex.2 . . . 4 (𝜑𝐵𝐶)
4139, 8, 10, 40nehash2 14446 . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
421, 2, 3, 4, 20, 6, 41tgbtwndiff 28440 . 2 (𝜑 → ∃𝑦𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
4337, 42r19.29a 3142 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  hlGchlg 28534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-hlg 28535
This theorem is referenced by:  hlcgreu  28552  iscgra1  28744
  Copyright terms: Public domain W3C validator