Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwntriv2 | Structured version Visualization version GIF version |
Description: Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
tgbtwntriv2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 767 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) → 𝐵 ∈ (𝐴𝐼𝑥)) | |
2 | tkgeom.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tkgeom.d | . . . . . 6 ⊢ − = (dist‘𝐺) | |
4 | tkgeom.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tkgeom.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → 𝐺 ∈ TarskiG) |
7 | tgbtwntriv2.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | 7 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → 𝐵 ∈ 𝑃) |
9 | simplr 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → 𝑥 ∈ 𝑃) | |
10 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → (𝐵 − 𝑥) = (𝐵 − 𝐵)) | |
11 | 2, 3, 4, 6, 8, 9, 8, 10 | axtgcgrid 26728 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → 𝐵 = 𝑥) |
12 | 11 | adantrl 712 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) → 𝐵 = 𝑥) |
13 | 12 | oveq2d 7271 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) → (𝐴𝐼𝐵) = (𝐴𝐼𝑥)) |
14 | 1, 13 | eleqtrrd 2842 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) → 𝐵 ∈ (𝐴𝐼𝐵)) |
15 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
16 | 2, 3, 4, 5, 15, 7, 7, 7 | axtgsegcon 26729 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) |
17 | 14, 16 | r19.29a 3217 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-trkgc 26713 df-trkgcb 26715 df-trkg 26718 |
This theorem is referenced by: tgbtwncom 26753 tgbtwntriv1 26756 tgcolg 26819 legid 26852 hlid 26874 lnhl 26880 tglinerflx2 26899 mirreu3 26919 mirconn 26943 symquadlem 26954 outpasch 27020 hlpasch 27021 |
Copyright terms: Public domain | W3C validator |