| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwntriv2 | Structured version Visualization version GIF version | ||
| Description: Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgbtwntriv2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) → 𝐵 ∈ (𝐴𝐼𝑥)) | |
| 2 | tkgeom.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tkgeom.d | . . . . . 6 ⊢ − = (dist‘𝐺) | |
| 4 | tkgeom.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tkgeom.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → 𝐺 ∈ TarskiG) |
| 7 | tgbtwntriv2.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → 𝐵 ∈ 𝑃) |
| 9 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → 𝑥 ∈ 𝑃) | |
| 10 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → (𝐵 − 𝑥) = (𝐵 − 𝐵)) | |
| 11 | 2, 3, 4, 6, 8, 9, 8, 10 | axtgcgrid 28441 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵)) → 𝐵 = 𝑥) |
| 12 | 11 | adantrl 716 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) → 𝐵 = 𝑥) |
| 13 | 12 | oveq2d 7362 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) → (𝐴𝐼𝐵) = (𝐴𝐼𝑥)) |
| 14 | 1, 13 | eleqtrrd 2834 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) → 𝐵 ∈ (𝐴𝐼𝐵)) |
| 15 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 16 | 2, 3, 4, 5, 15, 7, 7, 7 | axtgsegcon 28442 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 − 𝑥) = (𝐵 − 𝐵))) |
| 17 | 14, 16 | r19.29a 3140 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 TarskiGcstrkg 28405 Itvcitv 28411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-trkgc 28426 df-trkgcb 28428 df-trkg 28431 |
| This theorem is referenced by: tgbtwncom 28466 tgbtwntriv1 28469 tgcolg 28532 legid 28565 hlid 28587 lnhl 28593 tglinerflx2 28612 mirreu3 28632 mirconn 28656 symquadlem 28667 outpasch 28733 hlpasch 28734 |
| Copyright terms: Public domain | W3C validator |