MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwntriv2 Structured version   Visualization version   GIF version

Theorem tgbtwntriv2 28495
Description: Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
Assertion
Ref Expression
tgbtwntriv2 (𝜑𝐵 ∈ (𝐴𝐼𝐵))

Proof of Theorem tgbtwntriv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . 3 (((𝜑𝑥𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵))) → 𝐵 ∈ (𝐴𝐼𝑥))
2 tkgeom.p . . . . . 6 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . . . 6 = (dist‘𝐺)
4 tkgeom.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → 𝐺 ∈ TarskiG)
7 tgbtwntriv2.2 . . . . . . 7 (𝜑𝐵𝑃)
87ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → 𝐵𝑃)
9 simplr 769 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → 𝑥𝑃)
10 simpr 484 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → (𝐵 𝑥) = (𝐵 𝐵))
112, 3, 4, 6, 8, 9, 8, 10axtgcgrid 28471 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → 𝐵 = 𝑥)
1211adantrl 716 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵))) → 𝐵 = 𝑥)
1312oveq2d 7447 . . 3 (((𝜑𝑥𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵))) → (𝐴𝐼𝐵) = (𝐴𝐼𝑥))
141, 13eleqtrrd 2844 . 2 (((𝜑𝑥𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵))) → 𝐵 ∈ (𝐴𝐼𝐵))
15 tgbtwntriv2.1 . . 3 (𝜑𝐴𝑃)
162, 3, 4, 5, 15, 7, 7, 7axtgsegcon 28472 . 2 (𝜑 → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵)))
1714, 16r19.29a 3162 1 (𝜑𝐵 ∈ (𝐴𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-trkgc 28456  df-trkgcb 28458  df-trkg 28461
This theorem is referenced by:  tgbtwncom  28496  tgbtwntriv1  28499  tgcolg  28562  legid  28595  hlid  28617  lnhl  28623  tglinerflx2  28642  mirreu3  28662  mirconn  28686  symquadlem  28697  outpasch  28763  hlpasch  28764
  Copyright terms: Public domain W3C validator