MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwntriv2 Structured version   Visualization version   GIF version

Theorem tgbtwntriv2 26752
Description: Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
Assertion
Ref Expression
tgbtwntriv2 (𝜑𝐵 ∈ (𝐴𝐼𝐵))

Proof of Theorem tgbtwntriv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 767 . . 3 (((𝜑𝑥𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵))) → 𝐵 ∈ (𝐴𝐼𝑥))
2 tkgeom.p . . . . . 6 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . . . 6 = (dist‘𝐺)
4 tkgeom.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 722 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → 𝐺 ∈ TarskiG)
7 tgbtwntriv2.2 . . . . . . 7 (𝜑𝐵𝑃)
87ad2antrr 722 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → 𝐵𝑃)
9 simplr 765 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → 𝑥𝑃)
10 simpr 484 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → (𝐵 𝑥) = (𝐵 𝐵))
112, 3, 4, 6, 8, 9, 8, 10axtgcgrid 26728 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐵 𝑥) = (𝐵 𝐵)) → 𝐵 = 𝑥)
1211adantrl 712 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵))) → 𝐵 = 𝑥)
1312oveq2d 7271 . . 3 (((𝜑𝑥𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵))) → (𝐴𝐼𝐵) = (𝐴𝐼𝑥))
141, 13eleqtrrd 2842 . 2 (((𝜑𝑥𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵))) → 𝐵 ∈ (𝐴𝐼𝐵))
15 tgbtwntriv2.1 . . 3 (𝜑𝐴𝑃)
162, 3, 4, 5, 15, 7, 7, 7axtgsegcon 26729 . 2 (𝜑 → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐵 𝑥) = (𝐵 𝐵)))
1714, 16r19.29a 3217 1 (𝜑𝐵 ∈ (𝐴𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgc 26713  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgbtwncom  26753  tgbtwntriv1  26756  tgcolg  26819  legid  26852  hlid  26874  lnhl  26880  tglinerflx2  26899  mirreu3  26919  mirconn  26943  symquadlem  26954  outpasch  27020  hlpasch  27021
  Copyright terms: Public domain W3C validator