Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincid Structured version   Visualization version   GIF version

Theorem thincid 49421
Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.)
Hypotheses
Ref Expression
thincid.c (𝜑𝐶 ∈ ThinCat)
thincid.b 𝐵 = (Base‘𝐶)
thincid.h 𝐻 = (Hom ‘𝐶)
thincid.x (𝜑𝑋𝐵)
thincid.i 1 = (Id‘𝐶)
thincid.f (𝜑𝐹 ∈ (𝑋𝐻𝑋))
Assertion
Ref Expression
thincid (𝜑𝐹 = ( 1𝑋))

Proof of Theorem thincid
StepHypRef Expression
1 thincid.x . 2 (𝜑𝑋𝐵)
2 thincid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑋))
3 thincid.b . . 3 𝐵 = (Base‘𝐶)
4 thincid.h . . 3 𝐻 = (Hom ‘𝐶)
5 thincid.i . . 3 1 = (Id‘𝐶)
6 thincid.c . . . 4 (𝜑𝐶 ∈ ThinCat)
76thinccd 49412 . . 3 (𝜑𝐶 ∈ Cat)
83, 4, 5, 7, 1catidcl 17588 . 2 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
91, 1, 2, 8, 3, 4, 6thincmo2 49415 1 (𝜑𝐹 = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  Idccid 17571  ThinCatcthinc 49406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-cat 17574  df-cid 17575  df-thinc 49407
This theorem is referenced by:  functhinclem4  49436  thincsect  49456  termcid  49475
  Copyright terms: Public domain W3C validator