Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincid | Structured version Visualization version GIF version |
Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincid.i | ⊢ 1 = (Id‘𝐶) |
thincid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) |
Ref | Expression |
---|---|
thincid | ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincid.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | thincid.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) | |
3 | thincid.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | thincid.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | thincid.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
6 | thincid.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
7 | 6 | thinccd 46306 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | 3, 4, 5, 7, 1 | catidcl 17391 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
9 | 1, 1, 2, 8, 3, 4, 6 | thincmo2 46309 | 1 ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 Idccid 17374 ThinCatcthinc 46300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-cat 17377 df-cid 17378 df-thinc 46301 |
This theorem is referenced by: functhinclem4 46325 thincsect 46338 |
Copyright terms: Public domain | W3C validator |