![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincid | Structured version Visualization version GIF version |
Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincid.i | ⊢ 1 = (Id‘𝐶) |
thincid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) |
Ref | Expression |
---|---|
thincid | ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincid.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | thincid.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) | |
3 | thincid.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | thincid.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | thincid.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
6 | thincid.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
7 | 6 | thinccd 48346 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | 3, 4, 5, 7, 1 | catidcl 17695 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
9 | 1, 1, 2, 8, 3, 4, 6 | thincmo2 48349 | 1 ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 Hom chom 17277 Idccid 17678 ThinCatcthinc 48340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-cat 17681 df-cid 17682 df-thinc 48341 |
This theorem is referenced by: functhinclem4 48365 thincsect 48378 |
Copyright terms: Public domain | W3C validator |