Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincid Structured version   Visualization version   GIF version

Theorem thincid 46202
Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.)
Hypotheses
Ref Expression
thincid.c (𝜑𝐶 ∈ ThinCat)
thincid.b 𝐵 = (Base‘𝐶)
thincid.h 𝐻 = (Hom ‘𝐶)
thincid.x (𝜑𝑋𝐵)
thincid.i 1 = (Id‘𝐶)
thincid.f (𝜑𝐹 ∈ (𝑋𝐻𝑋))
Assertion
Ref Expression
thincid (𝜑𝐹 = ( 1𝑋))

Proof of Theorem thincid
StepHypRef Expression
1 thincid.x . 2 (𝜑𝑋𝐵)
2 thincid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑋))
3 thincid.b . . 3 𝐵 = (Base‘𝐶)
4 thincid.h . . 3 𝐻 = (Hom ‘𝐶)
5 thincid.i . . 3 1 = (Id‘𝐶)
6 thincid.c . . . 4 (𝜑𝐶 ∈ ThinCat)
76thinccd 46194 . . 3 (𝜑𝐶 ∈ Cat)
83, 4, 5, 7, 1catidcl 17308 . 2 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
91, 1, 2, 8, 3, 4, 6thincmo2 46197 1 (𝜑𝐹 = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  Idccid 17291  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-cat 17294  df-cid 17295  df-thinc 46189
This theorem is referenced by:  functhinclem4  46213  thincsect  46226
  Copyright terms: Public domain W3C validator