Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincid Structured version   Visualization version   GIF version

Theorem thincid 46314
Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.)
Hypotheses
Ref Expression
thincid.c (𝜑𝐶 ∈ ThinCat)
thincid.b 𝐵 = (Base‘𝐶)
thincid.h 𝐻 = (Hom ‘𝐶)
thincid.x (𝜑𝑋𝐵)
thincid.i 1 = (Id‘𝐶)
thincid.f (𝜑𝐹 ∈ (𝑋𝐻𝑋))
Assertion
Ref Expression
thincid (𝜑𝐹 = ( 1𝑋))

Proof of Theorem thincid
StepHypRef Expression
1 thincid.x . 2 (𝜑𝑋𝐵)
2 thincid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑋))
3 thincid.b . . 3 𝐵 = (Base‘𝐶)
4 thincid.h . . 3 𝐻 = (Hom ‘𝐶)
5 thincid.i . . 3 1 = (Id‘𝐶)
6 thincid.c . . . 4 (𝜑𝐶 ∈ ThinCat)
76thinccd 46306 . . 3 (𝜑𝐶 ∈ Cat)
83, 4, 5, 7, 1catidcl 17391 . 2 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
91, 1, 2, 8, 3, 4, 6thincmo2 46309 1 (𝜑𝐹 = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  Idccid 17374  ThinCatcthinc 46300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-cat 17377  df-cid 17378  df-thinc 46301
This theorem is referenced by:  functhinclem4  46325  thincsect  46338
  Copyright terms: Public domain W3C validator