| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincid | Structured version Visualization version GIF version | ||
| Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincid.i | ⊢ 1 = (Id‘𝐶) |
| thincid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) |
| Ref | Expression |
|---|---|
| thincid | ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincid.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | thincid.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) | |
| 3 | thincid.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | thincid.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | thincid.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 6 | thincid.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 7 | 6 | thinccd 49416 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | 3, 4, 5, 7, 1 | catidcl 17650 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 9 | 1, 1, 2, 8, 3, 4, 6 | thincmo2 49419 | 1 ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 Idccid 17633 ThinCatcthinc 49410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-cat 17636 df-cid 17637 df-thinc 49411 |
| This theorem is referenced by: functhinclem4 49440 thincsect 49460 termcid 49479 |
| Copyright terms: Public domain | W3C validator |