Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccic | Structured version Visualization version GIF version |
Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thinciso.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
thinccic | ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
2 | thinciso.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | eqid 2736 | . . . . . 6 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
4 | thincsect.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
5 | 4 | thinccd 46646 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
6 | thincsect.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | thincsect.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 5, 6, 7 | isohom 17577 | . . . . 5 ⊢ (𝜑 → (𝑋(Iso‘𝐶)𝑌) ⊆ (𝑋𝐻𝑌)) |
9 | 8 | sselda 3931 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌)) |
10 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat) |
11 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 ∈ 𝐵) |
12 | 7 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌 ∈ 𝐵) |
13 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
14 | 10, 1, 11, 12, 2, 3, 13 | thinciso 46681 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) |
15 | 9, 14 | biadanid 820 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))) |
16 | 15 | exbidv 1923 | . 2 ⊢ (𝜑 → (∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))) |
17 | 3, 1, 5, 6, 7 | cic 17600 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌))) |
18 | n0 4292 | . . . . 5 ⊢ ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
19 | 18 | anbi1i 624 | . . . 4 ⊢ (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)) |
20 | 19.41v 1952 | . . . 4 ⊢ (∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)) | |
21 | 19, 20 | bitr4i 277 | . . 3 ⊢ (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)) |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))) |
23 | 16, 17, 22 | 3bitr4d 310 | 1 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2940 ∅c0 4268 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 Hom chom 17062 Isociso 17547 ≃𝑐 ccic 17596 ThinCatcthinc 46640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-supp 8040 df-cat 17466 df-cid 17467 df-sect 17548 df-inv 17549 df-iso 17550 df-cic 17597 df-thinc 46641 |
This theorem is referenced by: postc 46703 |
Copyright terms: Public domain | W3C validator |