Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccic Structured version   Visualization version   GIF version

Theorem thinccic 46230
Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
thincsect.c (𝜑𝐶 ∈ ThinCat)
thincsect.b 𝐵 = (Base‘𝐶)
thincsect.x (𝜑𝑋𝐵)
thincsect.y (𝜑𝑌𝐵)
thinciso.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
thinccic (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅)))

Proof of Theorem thinccic
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 thincsect.b . . . . . 6 𝐵 = (Base‘𝐶)
2 thinciso.h . . . . . 6 𝐻 = (Hom ‘𝐶)
3 eqid 2738 . . . . . 6 (Iso‘𝐶) = (Iso‘𝐶)
4 thincsect.c . . . . . . 7 (𝜑𝐶 ∈ ThinCat)
54thinccd 46194 . . . . . 6 (𝜑𝐶 ∈ Cat)
6 thincsect.x . . . . . 6 (𝜑𝑋𝐵)
7 thincsect.y . . . . . 6 (𝜑𝑌𝐵)
81, 2, 3, 5, 6, 7isohom 17405 . . . . 5 (𝜑 → (𝑋(Iso‘𝐶)𝑌) ⊆ (𝑋𝐻𝑌))
98sselda 3917 . . . 4 ((𝜑𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
104adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat)
116adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
127adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
13 simpr 484 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
1410, 1, 11, 12, 2, 3, 13thinciso 46229 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅))
159, 14biadanid 819 . . 3 (𝜑 → (𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)))
1615exbidv 1925 . 2 (𝜑 → (∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)))
173, 1, 5, 6, 7cic 17428 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)))
18 n0 4277 . . . . 5 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1918anbi1i 623 . . . 4 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))
20 19.41v 1954 . . . 4 (∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))
2119, 20bitr4i 277 . . 3 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))
2221a1i 11 . 2 (𝜑 → (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)))
2316, 17, 223bitr4d 310 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  Isociso 17375  𝑐 ccic 17424  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-supp 7949  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377  df-iso 17378  df-cic 17425  df-thinc 46189
This theorem is referenced by:  postc  46249
  Copyright terms: Public domain W3C validator