![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccic | Structured version Visualization version GIF version |
Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thinciso.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
thinccic | ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
2 | thinciso.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | eqid 2726 | . . . . . 6 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
4 | thincsect.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
5 | 4 | thinccd 48382 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
6 | thincsect.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | thincsect.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 5, 6, 7 | isohom 17787 | . . . . 5 ⊢ (𝜑 → (𝑋(Iso‘𝐶)𝑌) ⊆ (𝑋𝐻𝑌)) |
9 | 8 | sselda 3978 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌)) |
10 | 4 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat) |
11 | 6 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 ∈ 𝐵) |
12 | 7 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌 ∈ 𝐵) |
13 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
14 | 10, 1, 11, 12, 2, 3, 13 | thinciso 48417 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) |
15 | 9, 14 | biadanid 821 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))) |
16 | 15 | exbidv 1917 | . 2 ⊢ (𝜑 → (∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))) |
17 | 3, 1, 5, 6, 7 | cic 17810 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌))) |
18 | n0 4346 | . . . . 5 ⊢ ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
19 | 18 | anbi1i 622 | . . . 4 ⊢ (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)) |
20 | 19.41v 1946 | . . . 4 ⊢ (∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)) | |
21 | 19, 20 | bitr4i 277 | . . 3 ⊢ (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)) |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))) |
23 | 16, 17, 22 | 3bitr4d 310 | 1 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∅c0 4322 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 Hom chom 17272 Isociso 17757 ≃𝑐 ccic 17806 ThinCatcthinc 48376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-supp 8167 df-cat 17676 df-cid 17677 df-sect 17758 df-inv 17759 df-iso 17760 df-cic 17807 df-thinc 48377 |
This theorem is referenced by: postc 48439 |
Copyright terms: Public domain | W3C validator |