Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccic Structured version   Visualization version   GIF version

Theorem thinccic 46682
Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
thincsect.c (𝜑𝐶 ∈ ThinCat)
thincsect.b 𝐵 = (Base‘𝐶)
thincsect.x (𝜑𝑋𝐵)
thincsect.y (𝜑𝑌𝐵)
thinciso.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
thinccic (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅)))

Proof of Theorem thinccic
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 thincsect.b . . . . . 6 𝐵 = (Base‘𝐶)
2 thinciso.h . . . . . 6 𝐻 = (Hom ‘𝐶)
3 eqid 2736 . . . . . 6 (Iso‘𝐶) = (Iso‘𝐶)
4 thincsect.c . . . . . . 7 (𝜑𝐶 ∈ ThinCat)
54thinccd 46646 . . . . . 6 (𝜑𝐶 ∈ Cat)
6 thincsect.x . . . . . 6 (𝜑𝑋𝐵)
7 thincsect.y . . . . . 6 (𝜑𝑌𝐵)
81, 2, 3, 5, 6, 7isohom 17577 . . . . 5 (𝜑 → (𝑋(Iso‘𝐶)𝑌) ⊆ (𝑋𝐻𝑌))
98sselda 3931 . . . 4 ((𝜑𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
104adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat)
116adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
127adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
13 simpr 485 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
1410, 1, 11, 12, 2, 3, 13thinciso 46681 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅))
159, 14biadanid 820 . . 3 (𝜑 → (𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)))
1615exbidv 1923 . 2 (𝜑 → (∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)))
173, 1, 5, 6, 7cic 17600 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)))
18 n0 4292 . . . . 5 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1918anbi1i 624 . . . 4 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))
20 19.41v 1952 . . . 4 (∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))
2119, 20bitr4i 277 . . 3 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅))
2221a1i 11 . 2 (𝜑 → (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅) ↔ ∃𝑓(𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑌𝐻𝑋) ≠ ∅)))
2316, 17, 223bitr4d 310 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  wne 2940  c0 4268   class class class wbr 5089  cfv 6473  (class class class)co 7329  Basecbs 17001  Hom chom 17062  Isociso 17547  𝑐 ccic 17596  ThinCatcthinc 46640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-1st 7891  df-2nd 7892  df-supp 8040  df-cat 17466  df-cid 17467  df-sect 17548  df-inv 17549  df-iso 17550  df-cic 17597  df-thinc 46641
This theorem is referenced by:  postc  46703
  Copyright terms: Public domain W3C validator