MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe Structured version   Visualization version   GIF version

Theorem tskwe 10019
Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
tskwe ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tskwe
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5396 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 rabexg 5355 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V)
3 incom 4230 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
4 inex1g 5337 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) ∈ V)
53, 4eqeltrrid 2849 . . . 4 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V)
6 inss1 4258 . . . . . . . . . . 11 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On
76sseli 4004 . . . . . . . . . 10 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ On)
8 onelon 6420 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
98ancoms 458 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ On) → 𝑦 ∈ On)
107, 9sylan2 592 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ On)
11 onelss 6437 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
1211impcom 407 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧 ∈ On) → 𝑦𝑧)
137, 12sylan2 592 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
14 inss2 4259 . . . . . . . . . . . . . . . . 17 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}
1514sseli 4004 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
16 breq1 5169 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1716elrab 3708 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1815, 17sylib 218 . . . . . . . . . . . . . . 15 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1918simpld 494 . . . . . . . . . . . . . 14 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ 𝒫 𝐴)
2019elpwid 4631 . . . . . . . . . . . . 13 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2120adantl 481 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
2213, 21sstrd 4019 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
23 velpw 4627 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
2422, 23sylibr 234 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ 𝒫 𝐴)
25 vex 3492 . . . . . . . . . . . 12 𝑧 ∈ V
26 ssdomg 9060 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
2725, 13, 26mpsyl 68 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
2818simprd 495 . . . . . . . . . . . 12 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2928adantl 481 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
30 domsdomtr 9178 . . . . . . . . . . 11 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
3127, 29, 30syl2anc 583 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
32 breq1 5169 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3332elrab 3708 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑦 ∈ 𝒫 𝐴𝑦𝐴))
3424, 31, 33sylanbrc 582 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
3510, 34elind 4223 . . . . . . . 8 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
3635gen2 1794 . . . . . . 7 𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
37 dftr2 5285 . . . . . . 7 (Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
3836, 37mpbir 231 . . . . . 6 Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
39 ordon 7812 . . . . . 6 Ord On
40 trssord 6412 . . . . . 6 ((Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On ∧ Ord On) → Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
4138, 6, 39, 40mp3an 1461 . . . . 5 Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
42 elong 6403 . . . . 5 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ↔ Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
4341, 42mpbiri 258 . . . 4 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
441, 2, 5, 434syl 19 . . 3 (𝐴𝑉 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
4544adantr 480 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
46 simpr 484 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴)
4714, 46sstrid 4020 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴)
48 ssdomg 9060 . . . . 5 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
4948adantr 480 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
5047, 49mpd 15 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴)
51 ordirr 6413 . . . . 5 (Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
5241, 51mp1i 13 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
53443ad2ant1 1133 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
54 elpw2g 5351 . . . . . . . . . 10 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5554adantr 480 . . . . . . . . 9 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5647, 55mpbird 257 . . . . . . . 8 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
57563adant3 1132 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
58 simp3 1138 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
59 nfcv 2908 . . . . . . . . 9 𝑥On
60 nfrab1 3464 . . . . . . . . 9 𝑥{𝑥 ∈ 𝒫 𝐴𝑥𝐴}
6159, 60nfin 4245 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
62 nfcv 2908 . . . . . . . 8 𝑥𝒫 𝐴
63 nfcv 2908 . . . . . . . . 9 𝑥
64 nfcv 2908 . . . . . . . . 9 𝑥𝐴
6561, 63, 64nfbr 5213 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴
66 breq1 5169 . . . . . . . 8 (𝑥 = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑥𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6761, 62, 65, 66elrabf 3704 . . . . . . 7 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6857, 58, 67sylanbrc 582 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
6953, 68elind 4223 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
70693expia 1121 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
7152, 70mtod 198 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
72 bren2 9043 . . 3 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴 ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴 ∧ ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
7350, 71, 72sylanbrc 582 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴)
74 isnumi 10015 . 2 (((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴) → 𝐴 ∈ dom card)
7545, 73, 74syl2anc 583 1 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wal 1535  wcel 2108  {crab 3443  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   class class class wbr 5166  Tr wtr 5283  dom cdm 5700  Ord word 6394  Oncon0 6395  cen 9000  cdom 9001  csdm 9002  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-card 10008
This theorem is referenced by:  tskwe2  10842  grothac  10899
  Copyright terms: Public domain W3C validator