MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe Structured version   Visualization version   GIF version

Theorem tskwe 9379
Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
tskwe ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tskwe
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5279 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 rabexg 5234 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V)
3 incom 4178 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
4 inex1g 5223 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) ∈ V)
53, 4eqeltrrid 2918 . . . 4 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V)
6 inss1 4205 . . . . . . . . . . 11 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On
76sseli 3963 . . . . . . . . . 10 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ On)
8 onelon 6216 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
98ancoms 461 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ On) → 𝑦 ∈ On)
107, 9sylan2 594 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ On)
11 onelss 6233 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
1211impcom 410 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧 ∈ On) → 𝑦𝑧)
137, 12sylan2 594 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
14 inss2 4206 . . . . . . . . . . . . . . . . 17 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}
1514sseli 3963 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
16 breq1 5069 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1716elrab 3680 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1815, 17sylib 220 . . . . . . . . . . . . . . 15 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1918simpld 497 . . . . . . . . . . . . . 14 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ 𝒫 𝐴)
2019elpwid 4550 . . . . . . . . . . . . 13 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2120adantl 484 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
2213, 21sstrd 3977 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
23 velpw 4544 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
2422, 23sylibr 236 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ 𝒫 𝐴)
25 vex 3497 . . . . . . . . . . . 12 𝑧 ∈ V
26 ssdomg 8555 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
2725, 13, 26mpsyl 68 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
2818simprd 498 . . . . . . . . . . . 12 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2928adantl 484 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
30 domsdomtr 8652 . . . . . . . . . . 11 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
3127, 29, 30syl2anc 586 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
32 breq1 5069 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3332elrab 3680 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑦 ∈ 𝒫 𝐴𝑦𝐴))
3424, 31, 33sylanbrc 585 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
3510, 34elind 4171 . . . . . . . 8 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
3635gen2 1797 . . . . . . 7 𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
37 dftr2 5174 . . . . . . 7 (Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
3836, 37mpbir 233 . . . . . 6 Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
39 ordon 7498 . . . . . 6 Ord On
40 trssord 6208 . . . . . 6 ((Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On ∧ Ord On) → Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
4138, 6, 39, 40mp3an 1457 . . . . 5 Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
42 elong 6199 . . . . 5 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ↔ Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
4341, 42mpbiri 260 . . . 4 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
441, 2, 5, 434syl 19 . . 3 (𝐴𝑉 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
4544adantr 483 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
46 simpr 487 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴)
4714, 46sstrid 3978 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴)
48 ssdomg 8555 . . . . 5 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
4948adantr 483 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
5047, 49mpd 15 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴)
51 ordirr 6209 . . . . 5 (Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
5241, 51mp1i 13 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
53443ad2ant1 1129 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
54 elpw2g 5247 . . . . . . . . . 10 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5554adantr 483 . . . . . . . . 9 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5647, 55mpbird 259 . . . . . . . 8 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
57563adant3 1128 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
58 simp3 1134 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
59 nfcv 2977 . . . . . . . . 9 𝑥On
60 nfrab1 3384 . . . . . . . . 9 𝑥{𝑥 ∈ 𝒫 𝐴𝑥𝐴}
6159, 60nfin 4193 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
62 nfcv 2977 . . . . . . . 8 𝑥𝒫 𝐴
63 nfcv 2977 . . . . . . . . 9 𝑥
64 nfcv 2977 . . . . . . . . 9 𝑥𝐴
6561, 63, 64nfbr 5113 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴
66 breq1 5069 . . . . . . . 8 (𝑥 = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑥𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6761, 62, 65, 66elrabf 3676 . . . . . . 7 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6857, 58, 67sylanbrc 585 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
6953, 68elind 4171 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
70693expia 1117 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
7152, 70mtod 200 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
72 bren2 8540 . . 3 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴 ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴 ∧ ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
7350, 71, 72sylanbrc 585 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴)
74 isnumi 9375 . 2 (((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴) → 𝐴 ∈ dom card)
7545, 73, 74syl2anc 586 1 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wal 1535  wcel 2114  {crab 3142  Vcvv 3494  cin 3935  wss 3936  𝒫 cpw 4539   class class class wbr 5066  Tr wtr 5172  dom cdm 5555  Ord word 6190  Oncon0 6191  cen 8506  cdom 8507  csdm 8508  cardccrd 9364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-card 9368
This theorem is referenced by:  tskwe2  10195  grothac  10252
  Copyright terms: Public domain W3C validator