MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe Structured version   Visualization version   GIF version

Theorem tskwe 9981
Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
tskwe ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tskwe
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5382 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 rabexg 5337 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V)
3 incom 4203 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
4 inex1g 5323 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) ∈ V)
53, 4eqeltrrid 2834 . . . 4 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V)
6 inss1 4231 . . . . . . . . . . 11 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On
76sseli 3978 . . . . . . . . . 10 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ On)
8 onelon 6399 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
98ancoms 457 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ On) → 𝑦 ∈ On)
107, 9sylan2 591 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ On)
11 onelss 6416 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
1211impcom 406 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧 ∈ On) → 𝑦𝑧)
137, 12sylan2 591 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
14 inss2 4232 . . . . . . . . . . . . . . . . 17 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}
1514sseli 3978 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
16 breq1 5155 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1716elrab 3684 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1815, 17sylib 217 . . . . . . . . . . . . . . 15 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1918simpld 493 . . . . . . . . . . . . . 14 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ 𝒫 𝐴)
2019elpwid 4615 . . . . . . . . . . . . 13 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2120adantl 480 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
2213, 21sstrd 3992 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
23 velpw 4611 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
2422, 23sylibr 233 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ 𝒫 𝐴)
25 vex 3477 . . . . . . . . . . . 12 𝑧 ∈ V
26 ssdomg 9027 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
2725, 13, 26mpsyl 68 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
2818simprd 494 . . . . . . . . . . . 12 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2928adantl 480 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
30 domsdomtr 9143 . . . . . . . . . . 11 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
3127, 29, 30syl2anc 582 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
32 breq1 5155 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3332elrab 3684 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑦 ∈ 𝒫 𝐴𝑦𝐴))
3424, 31, 33sylanbrc 581 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
3510, 34elind 4196 . . . . . . . 8 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
3635gen2 1790 . . . . . . 7 𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
37 dftr2 5271 . . . . . . 7 (Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
3836, 37mpbir 230 . . . . . 6 Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
39 ordon 7785 . . . . . 6 Ord On
40 trssord 6391 . . . . . 6 ((Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On ∧ Ord On) → Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
4138, 6, 39, 40mp3an 1457 . . . . 5 Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
42 elong 6382 . . . . 5 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ↔ Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
4341, 42mpbiri 257 . . . 4 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
441, 2, 5, 434syl 19 . . 3 (𝐴𝑉 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
4544adantr 479 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
46 simpr 483 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴)
4714, 46sstrid 3993 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴)
48 ssdomg 9027 . . . . 5 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
4948adantr 479 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
5047, 49mpd 15 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴)
51 ordirr 6392 . . . . 5 (Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
5241, 51mp1i 13 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
53443ad2ant1 1130 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
54 elpw2g 5350 . . . . . . . . . 10 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5554adantr 479 . . . . . . . . 9 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5647, 55mpbird 256 . . . . . . . 8 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
57563adant3 1129 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
58 simp3 1135 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
59 nfcv 2899 . . . . . . . . 9 𝑥On
60 nfrab1 3450 . . . . . . . . 9 𝑥{𝑥 ∈ 𝒫 𝐴𝑥𝐴}
6159, 60nfin 4218 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
62 nfcv 2899 . . . . . . . 8 𝑥𝒫 𝐴
63 nfcv 2899 . . . . . . . . 9 𝑥
64 nfcv 2899 . . . . . . . . 9 𝑥𝐴
6561, 63, 64nfbr 5199 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴
66 breq1 5155 . . . . . . . 8 (𝑥 = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑥𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6761, 62, 65, 66elrabf 3680 . . . . . . 7 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6857, 58, 67sylanbrc 581 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
6953, 68elind 4196 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
70693expia 1118 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
7152, 70mtod 197 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
72 bren2 9010 . . 3 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴 ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴 ∧ ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
7350, 71, 72sylanbrc 581 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴)
74 isnumi 9977 . 2 (((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴) → 𝐴 ∈ dom card)
7545, 73, 74syl2anc 582 1 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084  wal 1531  wcel 2098  {crab 3430  Vcvv 3473  cin 3948  wss 3949  𝒫 cpw 4606   class class class wbr 5152  Tr wtr 5269  dom cdm 5682  Ord word 6373  Oncon0 6374  cen 8967  cdom 8968  csdm 8969  cardccrd 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-card 9970
This theorem is referenced by:  tskwe2  10804  grothac  10861
  Copyright terms: Public domain W3C validator