MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe Structured version   Visualization version   GIF version

Theorem tskwe 9903
Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
tskwe ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tskwe
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5333 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 rabexg 5292 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V)
3 incom 4172 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
4 inex1g 5274 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) ∈ V)
53, 4eqeltrrid 2833 . . . 4 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V)
6 inss1 4200 . . . . . . . . . . 11 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On
76sseli 3942 . . . . . . . . . 10 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ On)
8 onelon 6357 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
98ancoms 458 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ On) → 𝑦 ∈ On)
107, 9sylan2 593 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ On)
11 onelss 6374 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
1211impcom 407 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧 ∈ On) → 𝑦𝑧)
137, 12sylan2 593 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
14 inss2 4201 . . . . . . . . . . . . . . . . 17 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}
1514sseli 3942 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
16 breq1 5110 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1716elrab 3659 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1815, 17sylib 218 . . . . . . . . . . . . . . 15 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1918simpld 494 . . . . . . . . . . . . . 14 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ 𝒫 𝐴)
2019elpwid 4572 . . . . . . . . . . . . 13 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2120adantl 481 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
2213, 21sstrd 3957 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
23 velpw 4568 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
2422, 23sylibr 234 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ 𝒫 𝐴)
25 vex 3451 . . . . . . . . . . . 12 𝑧 ∈ V
26 ssdomg 8971 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
2725, 13, 26mpsyl 68 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
2818simprd 495 . . . . . . . . . . . 12 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2928adantl 481 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
30 domsdomtr 9076 . . . . . . . . . . 11 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
3127, 29, 30syl2anc 584 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
32 breq1 5110 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3332elrab 3659 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑦 ∈ 𝒫 𝐴𝑦𝐴))
3424, 31, 33sylanbrc 583 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
3510, 34elind 4163 . . . . . . . 8 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
3635gen2 1796 . . . . . . 7 𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
37 dftr2 5216 . . . . . . 7 (Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
3836, 37mpbir 231 . . . . . 6 Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
39 ordon 7753 . . . . . 6 Ord On
40 trssord 6349 . . . . . 6 ((Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On ∧ Ord On) → Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
4138, 6, 39, 40mp3an 1463 . . . . 5 Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
42 elong 6340 . . . . 5 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ↔ Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
4341, 42mpbiri 258 . . . 4 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
441, 2, 5, 434syl 19 . . 3 (𝐴𝑉 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
4544adantr 480 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
46 simpr 484 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴)
4714, 46sstrid 3958 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴)
48 ssdomg 8971 . . . . 5 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
4948adantr 480 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
5047, 49mpd 15 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴)
51 ordirr 6350 . . . . 5 (Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
5241, 51mp1i 13 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
53443ad2ant1 1133 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
54 elpw2g 5288 . . . . . . . . . 10 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5554adantr 480 . . . . . . . . 9 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5647, 55mpbird 257 . . . . . . . 8 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
57563adant3 1132 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
58 simp3 1138 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
59 nfcv 2891 . . . . . . . . 9 𝑥On
60 nfrab1 3426 . . . . . . . . 9 𝑥{𝑥 ∈ 𝒫 𝐴𝑥𝐴}
6159, 60nfin 4187 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
62 nfcv 2891 . . . . . . . 8 𝑥𝒫 𝐴
63 nfcv 2891 . . . . . . . . 9 𝑥
64 nfcv 2891 . . . . . . . . 9 𝑥𝐴
6561, 63, 64nfbr 5154 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴
66 breq1 5110 . . . . . . . 8 (𝑥 = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑥𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6761, 62, 65, 66elrabf 3655 . . . . . . 7 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6857, 58, 67sylanbrc 583 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
6953, 68elind 4163 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
70693expia 1121 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
7152, 70mtod 198 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
72 bren2 8954 . . 3 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴 ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴 ∧ ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
7350, 71, 72sylanbrc 583 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴)
74 isnumi 9899 . 2 (((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴) → 𝐴 ∈ dom card)
7545, 73, 74syl2anc 584 1 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538  wcel 2109  {crab 3405  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   class class class wbr 5107  Tr wtr 5214  dom cdm 5638  Ord word 6331  Oncon0 6332  cen 8915  cdom 8916  csdm 8917  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-card 9892
This theorem is referenced by:  tskwe2  10726  grothac  10783
  Copyright terms: Public domain W3C validator