MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogs Structured version   Visualization version   GIF version

Theorem hartogs 9425
Description: The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 9423 and hartogslem2 9424) proof can be given using the axiom of choice, see ondomon 10446. As its label indicates, this result is used to justify the definition of the Hartogs function df-har 9438. (Contributed by Jeff Hankins, 22-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
hartogs (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem hartogs
Dummy variables 𝑔 𝑟 𝑠 𝑡 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6327 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3438 . . . . . . . . . . . . 13 𝑧 ∈ V
3 onelss 6344 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 406 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 8917 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 511 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domtr 8924 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 617 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 467 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 580 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 419 . . . . . . . . 9 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . 8 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 410 . . . . . . 7 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 5092 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3645 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 5092 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3645 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 296 . . . . . 6 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 406 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1797 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 5198 . . . 4 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 231 . . 3 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 4028 . . 3 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7705 . . 3 Ord On
26 trssord 6319 . . 3 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1463 . 2 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 eqid 2730 . . . 4 {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
29 eqid 2730 . . . 4 {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑔𝑤) ∧ 𝑡 = (𝑔𝑧)) ∧ 𝑤 E 𝑧)} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑔𝑤) ∧ 𝑡 = (𝑔𝑧)) ∧ 𝑤 E 𝑧)}
3028, 29hartogslem2 9424 . . 3 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
31 elong 6310 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3230, 31syl 17 . 2 (𝐴𝑉 → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3327, 32mpbiri 258 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2110  wrex 3054  {crab 3393  Vcvv 3434  cdif 3897  wss 3900   class class class wbr 5089  {copab 5151  Tr wtr 5196   I cid 5508   E cep 5513   We wwe 5566   × cxp 5612  dom cdm 5614  cres 5616  Ord word 6301  Oncon0 6302  cfv 6477  cdom 8862  OrdIsocoi 9390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-en 8865  df-dom 8866  df-oi 9391
This theorem is referenced by:  card2on  9435  harf  9439  harval  9441
  Copyright terms: Public domain W3C validator