| Step | Hyp | Ref
| Expression |
| 1 | | onelon 6409 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ∈ On) |
| 2 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
| 3 | | onelss 6426 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → (𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧)) |
| 4 | 3 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ⊆ 𝑧) |
| 5 | | ssdomg 9040 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ V → (𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧)) |
| 6 | 2, 4, 5 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ≼ 𝑧) |
| 7 | 1, 6 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝑧)) |
| 8 | | domtr 9047 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴) → 𝑦 ≼ 𝐴) |
| 9 | 8 | anim2i 617 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ (𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 10 | 9 | anassrs 467 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ On ∧ 𝑦 ≼ 𝑧) ∧ 𝑧 ≼ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 11 | 7, 10 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) ∧ 𝑧 ≼ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 12 | 11 | exp31 419 |
. . . . . . . . 9
⊢ (𝑧 ∈ On → (𝑦 ∈ 𝑧 → (𝑧 ≼ 𝐴 → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)))) |
| 13 | 12 | com12 32 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑧 → (𝑧 ∈ On → (𝑧 ≼ 𝐴 → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)))) |
| 14 | 13 | impd 410 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑧 → ((𝑧 ∈ On ∧ 𝑧 ≼ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴))) |
| 15 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ≼ 𝐴 ↔ 𝑧 ≼ 𝐴)) |
| 16 | 15 | elrab 3692 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ (𝑧 ∈ On ∧ 𝑧 ≼ 𝐴)) |
| 17 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴)) |
| 18 | 17 | elrab 3692 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 19 | 14, 16, 18 | 3imtr4g 296 |
. . . . . 6
⊢ (𝑦 ∈ 𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 20 | 19 | imp 406 |
. . . . 5
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
| 21 | 20 | gen2 1796 |
. . . 4
⊢
∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
| 22 | | dftr2 5261 |
. . . 4
⊢ (Tr
{𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 23 | 21, 22 | mpbir 231 |
. . 3
⊢ Tr {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} |
| 24 | | ssrab2 4080 |
. . 3
⊢ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ⊆ On |
| 25 | | ordon 7797 |
. . 3
⊢ Ord
On |
| 26 | | trssord 6401 |
. . 3
⊢ ((Tr
{𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
| 27 | 23, 24, 25, 26 | mp3an 1463 |
. 2
⊢ Ord
{𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} |
| 28 | | eqid 2737 |
. . . 4
⊢
{〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 29 | | eqid 2737 |
. . . 4
⊢
{〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑔‘𝑤) ∧ 𝑡 = (𝑔‘𝑧)) ∧ 𝑤 E 𝑧)} = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑔‘𝑤) ∧ 𝑡 = (𝑔‘𝑧)) ∧ 𝑤 E 𝑧)} |
| 30 | 28, 29 | hartogslem2 9583 |
. . 3
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
| 31 | | elong 6392 |
. . 3
⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 32 | 30, 31 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 33 | 27, 32 | mpbiri 258 |
1
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) |