| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version | ||
| Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7831 | . 2 ⊢ Tr ω | |
| 2 | omsson 7826 | . 2 ⊢ ω ⊆ On | |
| 3 | ordon 7733 | . 2 ⊢ Ord On | |
| 4 | trssord 6337 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ Ord ω |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 Tr wtr 5209 Ord word 6319 Oncon0 6320 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-om 7823 |
| This theorem is referenced by: omon 7834 limom 7838 ssnlim 7842 peano5 7849 omsucelsucb 8403 nnarcl 8557 nnawordex 8578 oaabslem 8588 oaabs2 8590 omabslem 8591 ominf 9181 ominfOLD 9182 findcard3 9205 findcard3OLD 9206 nnsdomg 9222 nnsdomgOLD 9223 dffi3 9358 wofib 9474 alephgeom 10011 iscard3 10022 iunfictbso 10043 unctb 10133 ackbij2lem1 10147 ackbij1lem3 10150 ackbij1lem18 10165 ackbij2 10171 cflim2 10192 fin23lem26 10254 fin23lem23 10255 fin23lem27 10257 fin67 10324 alephexp1 10508 pwfseqlem3 10589 pwdjundom 10596 winainflem 10622 wunex2 10667 om2uzoi 13896 ltweuz 13902 fz1isolem 14402 1stcrestlem 23372 om2noseqoi 28237 satfn 35335 hfuni 36165 hfninf 36167 finxpreclem4 37375 oaordnrex 43277 omnord1ex 43286 oenord1ex 43297 omabs2 43314 tfsconcat0b 43328 rn1st 45260 |
| Copyright terms: Public domain | W3C validator |