![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version |
Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom 7896 | . 2 ⊢ Tr ω | |
2 | omsson 7891 | . 2 ⊢ ω ⊆ On | |
3 | ordon 7796 | . 2 ⊢ Ord On | |
4 | trssord 6403 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ Ord ω |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 Tr wtr 5265 Ord word 6385 Oncon0 6386 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-om 7888 |
This theorem is referenced by: omon 7899 limom 7903 ssnlim 7907 omsindsOLD 7909 peano5 7916 omsucelsucb 8497 nnarcl 8653 nnawordex 8674 oaabslem 8684 oaabs2 8686 omabslem 8687 onomeneqOLD 9264 ominf 9292 ominfOLD 9293 findcard3 9316 findcard3OLD 9317 nnsdomg 9333 nnsdomgOLD 9334 dffi3 9469 wofib 9583 alephgeom 10120 iscard3 10131 iunfictbso 10152 unctb 10242 ackbij2lem1 10256 ackbij1lem3 10259 ackbij1lem18 10274 ackbij2 10280 cflim2 10301 fin23lem26 10363 fin23lem23 10364 fin23lem27 10366 fin67 10433 alephexp1 10617 pwfseqlem3 10698 pwdjundom 10705 winainflem 10731 wunex2 10776 om2uzoi 13993 ltweuz 13999 fz1isolem 14497 1stcrestlem 23476 om2noseqoi 28324 satfn 35340 hfuni 36166 hfninf 36168 finxpreclem4 37377 oaordnrex 43285 omnord1ex 43294 oenord1ex 43305 omabs2 43322 tfsconcat0b 43336 rn1st 45219 |
Copyright terms: Public domain | W3C validator |