| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version | ||
| Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7875 | . 2 ⊢ Tr ω | |
| 2 | omsson 7870 | . 2 ⊢ ω ⊆ On | |
| 3 | ordon 7776 | . 2 ⊢ Ord On | |
| 4 | trssord 6374 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ Ord ω |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 Tr wtr 5234 Ord word 6356 Oncon0 6357 ωcom 7866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-lim 6362 df-om 7867 |
| This theorem is referenced by: omon 7878 limom 7882 ssnlim 7886 peano5 7894 omsucelsucb 8477 nnarcl 8633 nnawordex 8654 oaabslem 8664 oaabs2 8666 omabslem 8667 onomeneqOLD 9243 ominf 9271 ominfOLD 9272 findcard3 9295 findcard3OLD 9296 nnsdomg 9312 nnsdomgOLD 9313 dffi3 9448 wofib 9564 alephgeom 10101 iscard3 10112 iunfictbso 10133 unctb 10223 ackbij2lem1 10237 ackbij1lem3 10240 ackbij1lem18 10255 ackbij2 10261 cflim2 10282 fin23lem26 10344 fin23lem23 10345 fin23lem27 10347 fin67 10414 alephexp1 10598 pwfseqlem3 10679 pwdjundom 10686 winainflem 10712 wunex2 10757 om2uzoi 13978 ltweuz 13984 fz1isolem 14484 1stcrestlem 23395 om2noseqoi 28254 satfn 35382 hfuni 36207 hfninf 36209 finxpreclem4 37417 oaordnrex 43286 omnord1ex 43295 oenord1ex 43306 omabs2 43323 tfsconcat0b 43337 rn1st 45264 |
| Copyright terms: Public domain | W3C validator |