MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordom Structured version   Visualization version   GIF version

Theorem ordom 7300
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ordom Ord ω

Proof of Theorem ordom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4948 . . 3 (Tr ω ↔ ∀𝑦𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω))
2 onelon 5961 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32expcom 400 . . . . . . 7 (𝑦𝑥 → (𝑥 ∈ On → 𝑦 ∈ On))
4 limord 5996 . . . . . . . . . . . 12 (Lim 𝑧 → Ord 𝑧)
5 ordtr 5950 . . . . . . . . . . . 12 (Ord 𝑧 → Tr 𝑧)
6 trel 4953 . . . . . . . . . . . 12 (Tr 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
74, 5, 63syl 18 . . . . . . . . . . 11 (Lim 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
87expd 402 . . . . . . . . . 10 (Lim 𝑧 → (𝑦𝑥 → (𝑥𝑧𝑦𝑧)))
98com12 32 . . . . . . . . 9 (𝑦𝑥 → (Lim 𝑧 → (𝑥𝑧𝑦𝑧)))
109a2d 29 . . . . . . . 8 (𝑦𝑥 → ((Lim 𝑧𝑥𝑧) → (Lim 𝑧𝑦𝑧)))
1110alimdv 2007 . . . . . . 7 (𝑦𝑥 → (∀𝑧(Lim 𝑧𝑥𝑧) → ∀𝑧(Lim 𝑧𝑦𝑧)))
123, 11anim12d 598 . . . . . 6 (𝑦𝑥 → ((𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)) → (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧))))
13 elom 7294 . . . . . 6 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)))
14 elom 7294 . . . . . 6 (𝑦 ∈ ω ↔ (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧)))
1512, 13, 143imtr4g 287 . . . . 5 (𝑦𝑥 → (𝑥 ∈ ω → 𝑦 ∈ ω))
1615imp 395 . . . 4 ((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
1716ax-gen 1877 . . 3 𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
181, 17mpgbir 1881 . 2 Tr ω
19 omsson 7295 . 2 ω ⊆ On
20 ordon 7208 . 2 Ord On
21 trssord 5953 . 2 ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω)
2218, 19, 20, 21mp3an 1578 1 Ord ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1635  wcel 2156  wss 3769  Tr wtr 4946  Ord word 5935  Oncon0 5936  Lim wlim 5937  ωcom 7291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096  ax-un 7175
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-tr 4947  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-om 7292
This theorem is referenced by:  elnn  7301  omon  7302  limom  7306  ssnlim  7309  omsinds  7310  peano5  7315  nnarcl  7929  nnawordex  7950  oaabslem  7956  oaabs2  7958  omabslem  7959  onomeneq  8385  ominf  8407  findcard3  8438  nnsdomg  8454  dffi3  8572  wofib  8685  alephgeom  9184  iscard3  9195  iunfictbso  9216  unctb  9308  ackbij2lem1  9322  ackbij1lem3  9325  ackbij1lem18  9340  ackbij2  9346  cflim2  9366  fin23lem26  9428  fin23lem23  9429  fin23lem27  9431  fin67  9498  alephexp1  9682  pwfseqlem3  9763  pwcdandom  9770  winainflem  9796  wunex2  9841  om2uzoi  12974  ltweuz  12980  fz1isolem  13458  1stcrestlem  21465  hfuni  32607  hfninf  32609  finxpreclem4  33542
  Copyright terms: Public domain W3C validator