MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordom Structured version   Visualization version   GIF version

Theorem ordom 7569
Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ordom Ord ω

Proof of Theorem ordom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5138 . . 3 (Tr ω ↔ ∀𝑦𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω))
2 onelon 6184 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32expcom 417 . . . . . . 7 (𝑦𝑥 → (𝑥 ∈ On → 𝑦 ∈ On))
4 limord 6218 . . . . . . . . . . . 12 (Lim 𝑧 → Ord 𝑧)
5 ordtr 6173 . . . . . . . . . . . 12 (Ord 𝑧 → Tr 𝑧)
6 trel 5143 . . . . . . . . . . . 12 (Tr 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
74, 5, 63syl 18 . . . . . . . . . . 11 (Lim 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
87expd 419 . . . . . . . . . 10 (Lim 𝑧 → (𝑦𝑥 → (𝑥𝑧𝑦𝑧)))
98com12 32 . . . . . . . . 9 (𝑦𝑥 → (Lim 𝑧 → (𝑥𝑧𝑦𝑧)))
109a2d 29 . . . . . . . 8 (𝑦𝑥 → ((Lim 𝑧𝑥𝑧) → (Lim 𝑧𝑦𝑧)))
1110alimdv 1917 . . . . . . 7 (𝑦𝑥 → (∀𝑧(Lim 𝑧𝑥𝑧) → ∀𝑧(Lim 𝑧𝑦𝑧)))
123, 11anim12d 611 . . . . . 6 (𝑦𝑥 → ((𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)) → (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧))))
13 elom 7563 . . . . . 6 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)))
14 elom 7563 . . . . . 6 (𝑦 ∈ ω ↔ (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧)))
1512, 13, 143imtr4g 299 . . . . 5 (𝑦𝑥 → (𝑥 ∈ ω → 𝑦 ∈ ω))
1615imp 410 . . . 4 ((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
1716ax-gen 1797 . . 3 𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
181, 17mpgbir 1801 . 2 Tr ω
19 omsson 7564 . 2 ω ⊆ On
20 ordon 7478 . 2 Ord On
21 trssord 6176 . 2 ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω)
2218, 19, 20, 21mp3an 1458 1 Ord ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536  wcel 2111  wss 3881  Tr wtr 5136  Ord word 6158  Oncon0 6159  Lim wlim 6160  ωcom 7560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-om 7561
This theorem is referenced by:  elnn  7570  omon  7571  limom  7575  ssnlim  7579  omsinds  7580  peano5  7585  omsucelsucb  8077  nnarcl  8225  nnawordex  8246  oaabslem  8253  oaabs2  8255  omabslem  8256  onomeneq  8693  ominf  8714  findcard3  8745  nnsdomg  8761  dffi3  8879  wofib  8993  alephgeom  9493  iscard3  9504  iunfictbso  9525  unctb  9616  ackbij2lem1  9630  ackbij1lem3  9633  ackbij1lem18  9648  ackbij2  9654  cflim2  9674  fin23lem26  9736  fin23lem23  9737  fin23lem27  9739  fin67  9806  alephexp1  9990  pwfseqlem3  10071  pwdjundom  10078  winainflem  10104  wunex2  10149  om2uzoi  13318  ltweuz  13324  fz1isolem  13815  1stcrestlem  22057  satfn  32715  hfuni  33758  hfninf  33760  finxpreclem4  34811
  Copyright terms: Public domain W3C validator