| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version | ||
| Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7805 | . 2 ⊢ Tr ω | |
| 2 | omsson 7800 | . 2 ⊢ ω ⊆ On | |
| 3 | ordon 7710 | . 2 ⊢ Ord On | |
| 4 | trssord 6323 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ Ord ω |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 Tr wtr 5196 Ord word 6305 Oncon0 6306 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-om 7797 |
| This theorem is referenced by: omon 7808 limom 7812 ssnlim 7816 peano5 7823 omsucelsucb 8377 nnarcl 8531 nnawordex 8552 oaabslem 8562 oaabs2 8564 omabslem 8565 ominf 9148 findcard3 9167 nnsdomg 9183 dffi3 9315 wofib 9431 alephgeom 9973 iscard3 9984 iunfictbso 10005 unctb 10095 ackbij2lem1 10109 ackbij1lem3 10112 ackbij1lem18 10127 ackbij2 10133 cflim2 10154 fin23lem26 10216 fin23lem23 10217 fin23lem27 10219 fin67 10286 alephexp1 10470 pwfseqlem3 10551 pwdjundom 10558 winainflem 10584 wunex2 10629 om2uzoi 13862 ltweuz 13868 fz1isolem 14368 1stcrestlem 23367 om2noseqoi 28233 satfn 35399 hfuni 36228 hfninf 36230 finxpreclem4 37438 oaordnrex 43398 omnord1ex 43407 oenord1ex 43418 omabs2 43435 tfsconcat0b 43449 rn1st 45380 |
| Copyright terms: Public domain | W3C validator |