![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version |
Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom 7864 | . 2 ⊢ Tr ω | |
2 | omsson 7859 | . 2 ⊢ ω ⊆ On | |
3 | ordon 7764 | . 2 ⊢ Ord On | |
4 | trssord 6382 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
5 | 1, 2, 3, 4 | mp3an 1462 | 1 ⊢ Ord ω |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3949 Tr wtr 5266 Ord word 6364 Oncon0 6365 ωcom 7855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 df-lim 6370 df-om 7856 |
This theorem is referenced by: omon 7867 limom 7871 ssnlim 7875 omsindsOLD 7877 peano5 7884 peano5OLD 7885 omsucelsucb 8458 nnarcl 8616 nnawordex 8637 oaabslem 8646 oaabs2 8648 omabslem 8649 onomeneqOLD 9229 ominf 9258 ominfOLD 9259 findcard3 9285 findcard3OLD 9286 nnsdomg 9302 nnsdomgOLD 9303 dffi3 9426 wofib 9540 alephgeom 10077 iscard3 10088 iunfictbso 10109 unctb 10200 ackbij2lem1 10214 ackbij1lem3 10217 ackbij1lem18 10232 ackbij2 10238 cflim2 10258 fin23lem26 10320 fin23lem23 10321 fin23lem27 10323 fin67 10390 alephexp1 10574 pwfseqlem3 10655 pwdjundom 10662 winainflem 10688 wunex2 10733 om2uzoi 13920 ltweuz 13926 fz1isolem 14422 1stcrestlem 22956 satfn 34346 hfuni 35156 hfninf 35158 finxpreclem4 36275 oaordnrex 42045 omnord1ex 42054 oenord1ex 42065 omabs2 42082 tfsconcat0b 42096 rn1st 43978 |
Copyright terms: Public domain | W3C validator |