| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version | ||
| Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7808 | . 2 ⊢ Tr ω | |
| 2 | omsson 7803 | . 2 ⊢ ω ⊆ On | |
| 3 | ordon 7713 | . 2 ⊢ Ord On | |
| 4 | trssord 6324 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ Ord ω |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3903 Tr wtr 5199 Ord word 6306 Oncon0 6307 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-om 7800 |
| This theorem is referenced by: omon 7811 limom 7815 ssnlim 7819 peano5 7826 omsucelsucb 8380 nnarcl 8534 nnawordex 8555 oaabslem 8565 oaabs2 8567 omabslem 8568 ominf 9153 findcard3 9172 nnsdomg 9188 dffi3 9321 wofib 9437 alephgeom 9976 iscard3 9987 iunfictbso 10008 unctb 10098 ackbij2lem1 10112 ackbij1lem3 10115 ackbij1lem18 10130 ackbij2 10136 cflim2 10157 fin23lem26 10219 fin23lem23 10220 fin23lem27 10222 fin67 10289 alephexp1 10473 pwfseqlem3 10554 pwdjundom 10561 winainflem 10587 wunex2 10632 om2uzoi 13862 ltweuz 13868 fz1isolem 14368 1stcrestlem 23337 om2noseqoi 28202 satfn 35332 hfuni 36162 hfninf 36164 finxpreclem4 37372 oaordnrex 43272 omnord1ex 43281 oenord1ex 43292 omabs2 43309 tfsconcat0b 43323 rn1st 45255 |
| Copyright terms: Public domain | W3C validator |