Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version |
Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom 7696 | . 2 ⊢ Tr ω | |
2 | omsson 7691 | . 2 ⊢ ω ⊆ On | |
3 | ordon 7604 | . 2 ⊢ Ord On | |
4 | trssord 6268 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
5 | 1, 2, 3, 4 | mp3an 1459 | 1 ⊢ Ord ω |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 Tr wtr 5187 Ord word 6250 Oncon0 6251 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-om 7688 |
This theorem is referenced by: omon 7699 limom 7703 ssnlim 7707 omsindsOLD 7709 peano5 7714 peano5OLD 7715 omsucelsucb 8259 nnarcl 8409 nnawordex 8430 oaabslem 8437 oaabs2 8439 omabslem 8440 onomeneq 8943 ominf 8964 findcard3 8987 nnsdomg 9003 dffi3 9120 wofib 9234 alephgeom 9769 iscard3 9780 iunfictbso 9801 unctb 9892 ackbij2lem1 9906 ackbij1lem3 9909 ackbij1lem18 9924 ackbij2 9930 cflim2 9950 fin23lem26 10012 fin23lem23 10013 fin23lem27 10015 fin67 10082 alephexp1 10266 pwfseqlem3 10347 pwdjundom 10354 winainflem 10380 wunex2 10425 om2uzoi 13603 ltweuz 13609 fz1isolem 14103 1stcrestlem 22511 satfn 33217 hfuni 34413 hfninf 34415 finxpreclem4 35492 |
Copyright terms: Public domain | W3C validator |