Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version |
Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom 7715 | . 2 ⊢ Tr ω | |
2 | omsson 7710 | . 2 ⊢ ω ⊆ On | |
3 | ordon 7621 | . 2 ⊢ Ord On | |
4 | trssord 6282 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ Ord ω |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3892 Tr wtr 5196 Ord word 6264 Oncon0 6265 ωcom 7706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-ord 6268 df-on 6269 df-lim 6270 df-om 7707 |
This theorem is referenced by: omon 7718 limom 7722 ssnlim 7726 omsindsOLD 7728 peano5 7734 peano5OLD 7735 omsucelsucb 8280 nnarcl 8432 nnawordex 8453 oaabslem 8460 oaabs2 8462 omabslem 8463 onomeneq 8992 ominf 9013 findcard3 9035 nnsdomg 9051 dffi3 9168 wofib 9282 alephgeom 9839 iscard3 9850 iunfictbso 9871 unctb 9962 ackbij2lem1 9976 ackbij1lem3 9979 ackbij1lem18 9994 ackbij2 10000 cflim2 10020 fin23lem26 10082 fin23lem23 10083 fin23lem27 10085 fin67 10152 alephexp1 10336 pwfseqlem3 10417 pwdjundom 10424 winainflem 10450 wunex2 10495 om2uzoi 13673 ltweuz 13679 fz1isolem 14173 1stcrestlem 22601 satfn 33313 hfuni 34482 hfninf 34484 finxpreclem4 35561 |
Copyright terms: Public domain | W3C validator |