| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version | ||
| Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7851 | . 2 ⊢ Tr ω | |
| 2 | omsson 7846 | . 2 ⊢ ω ⊆ On | |
| 3 | ordon 7753 | . 2 ⊢ Ord On | |
| 4 | trssord 6349 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ Ord ω |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 Tr wtr 5214 Ord word 6331 Oncon0 6332 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-om 7843 |
| This theorem is referenced by: omon 7854 limom 7858 ssnlim 7862 peano5 7869 omsucelsucb 8426 nnarcl 8580 nnawordex 8601 oaabslem 8611 oaabs2 8613 omabslem 8614 ominf 9205 ominfOLD 9206 findcard3 9229 findcard3OLD 9230 nnsdomg 9246 nnsdomgOLD 9247 dffi3 9382 wofib 9498 alephgeom 10035 iscard3 10046 iunfictbso 10067 unctb 10157 ackbij2lem1 10171 ackbij1lem3 10174 ackbij1lem18 10189 ackbij2 10195 cflim2 10216 fin23lem26 10278 fin23lem23 10279 fin23lem27 10281 fin67 10348 alephexp1 10532 pwfseqlem3 10613 pwdjundom 10620 winainflem 10646 wunex2 10691 om2uzoi 13920 ltweuz 13926 fz1isolem 14426 1stcrestlem 23339 om2noseqoi 28197 satfn 35342 hfuni 36172 hfninf 36174 finxpreclem4 37382 oaordnrex 43284 omnord1ex 43293 oenord1ex 43304 omabs2 43321 tfsconcat0b 43335 rn1st 45267 |
| Copyright terms: Public domain | W3C validator |