![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version |
Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom 7912 | . 2 ⊢ Tr ω | |
2 | omsson 7907 | . 2 ⊢ ω ⊆ On | |
3 | ordon 7812 | . 2 ⊢ Ord On | |
4 | trssord 6412 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
5 | 1, 2, 3, 4 | mp3an 1461 | 1 ⊢ Ord ω |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 Tr wtr 5283 Ord word 6394 Oncon0 6395 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-om 7904 |
This theorem is referenced by: omon 7915 limom 7919 ssnlim 7923 omsindsOLD 7925 peano5 7932 peano5OLD 7933 omsucelsucb 8514 nnarcl 8672 nnawordex 8693 oaabslem 8703 oaabs2 8705 omabslem 8706 onomeneqOLD 9292 ominf 9321 ominfOLD 9322 findcard3 9346 findcard3OLD 9347 nnsdomg 9363 nnsdomgOLD 9364 dffi3 9500 wofib 9614 alephgeom 10151 iscard3 10162 iunfictbso 10183 unctb 10273 ackbij2lem1 10287 ackbij1lem3 10290 ackbij1lem18 10305 ackbij2 10311 cflim2 10332 fin23lem26 10394 fin23lem23 10395 fin23lem27 10397 fin67 10464 alephexp1 10648 pwfseqlem3 10729 pwdjundom 10736 winainflem 10762 wunex2 10807 om2uzoi 14006 ltweuz 14012 fz1isolem 14510 1stcrestlem 23481 om2noseqoi 28327 satfn 35323 hfuni 36148 hfninf 36150 finxpreclem4 37360 oaordnrex 43257 omnord1ex 43266 oenord1ex 43277 omabs2 43294 tfsconcat0b 43308 rn1st 45183 |
Copyright terms: Public domain | W3C validator |