| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version | ||
| Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordom | ⊢ Ord ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7854 | . 2 ⊢ Tr ω | |
| 2 | omsson 7849 | . 2 ⊢ ω ⊆ On | |
| 3 | ordon 7756 | . 2 ⊢ Ord On | |
| 4 | trssord 6352 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ Ord ω |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 Tr wtr 5217 Ord word 6334 Oncon0 6335 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-om 7846 |
| This theorem is referenced by: omon 7857 limom 7861 ssnlim 7865 peano5 7872 omsucelsucb 8429 nnarcl 8583 nnawordex 8604 oaabslem 8614 oaabs2 8616 omabslem 8617 ominf 9212 ominfOLD 9213 findcard3 9236 findcard3OLD 9237 nnsdomg 9253 nnsdomgOLD 9254 dffi3 9389 wofib 9505 alephgeom 10042 iscard3 10053 iunfictbso 10074 unctb 10164 ackbij2lem1 10178 ackbij1lem3 10181 ackbij1lem18 10196 ackbij2 10202 cflim2 10223 fin23lem26 10285 fin23lem23 10286 fin23lem27 10288 fin67 10355 alephexp1 10539 pwfseqlem3 10620 pwdjundom 10627 winainflem 10653 wunex2 10698 om2uzoi 13927 ltweuz 13933 fz1isolem 14433 1stcrestlem 23346 om2noseqoi 28204 satfn 35349 hfuni 36179 hfninf 36181 finxpreclem4 37389 oaordnrex 43291 omnord1ex 43300 oenord1ex 43311 omabs2 43328 tfsconcat0b 43342 rn1st 45274 |
| Copyright terms: Public domain | W3C validator |