Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordom | Structured version Visualization version GIF version |
Description: The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom 7721 | . 2 ⊢ Tr ω | |
2 | omsson 7716 | . 2 ⊢ ω ⊆ On | |
3 | ordon 7627 | . 2 ⊢ Ord On | |
4 | trssord 6283 | . 2 ⊢ ((Tr ω ∧ ω ⊆ On ∧ Ord On) → Ord ω) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ Ord ω |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 Tr wtr 5191 Ord word 6265 Oncon0 6266 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-om 7713 |
This theorem is referenced by: omon 7724 limom 7728 ssnlim 7732 omsindsOLD 7734 peano5 7740 peano5OLD 7741 omsucelsucb 8289 nnarcl 8447 nnawordex 8468 oaabslem 8477 oaabs2 8479 omabslem 8480 onomeneqOLD 9012 ominf 9035 findcard3 9057 nnsdomg 9073 dffi3 9190 wofib 9304 alephgeom 9838 iscard3 9849 iunfictbso 9870 unctb 9961 ackbij2lem1 9975 ackbij1lem3 9978 ackbij1lem18 9993 ackbij2 9999 cflim2 10019 fin23lem26 10081 fin23lem23 10082 fin23lem27 10084 fin67 10151 alephexp1 10335 pwfseqlem3 10416 pwdjundom 10423 winainflem 10449 wunex2 10494 om2uzoi 13675 ltweuz 13681 fz1isolem 14175 1stcrestlem 22603 satfn 33317 hfuni 34486 hfninf 34488 finxpreclem4 35565 |
Copyright terms: Public domain | W3C validator |