| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifsnd | Structured version Visualization version GIF version | ||
| Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| eldifsnd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eldifsnd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eldifsnd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eldifsnd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 3 | eldifsn 4753 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-sn 4593 |
| This theorem is referenced by: prproe 4872 drngmcl 20666 r1pid2 26074 pfxchn 32942 chnind 32944 irrednzr 33208 fracfld 33265 rprmasso2 33504 rprmirredlem 33508 1arithidomlem1 33513 ufdprmidl 33519 1arithufdlem3 33524 1arithufdlem4 33525 dfufd2lem 33527 dfufd2 33528 zringfrac 33532 ply1dg1rt 33555 r1peuqusdeg1 35637 unitscyglem4 42193 resuppsinopn 42358 readvcot 42359 redivvald 42437 domnexpgn0cl 42518 drngmullcan 42520 drngmulrcan 42521 prjspvs 42605 |
| Copyright terms: Public domain | W3C validator |