| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifsnd | Structured version Visualization version GIF version | ||
| Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| eldifsnd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eldifsnd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eldifsnd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eldifsnd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 3 | eldifsn 4762 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-sn 4602 |
| This theorem is referenced by: prproe 4881 drngmcl 20710 r1pid2 26119 pfxchn 32989 chnind 32991 irrednzr 33245 fracfld 33302 rprmasso2 33541 rprmirredlem 33545 1arithidomlem1 33550 ufdprmidl 33556 1arithufdlem3 33561 1arithufdlem4 33562 dfufd2lem 33564 dfufd2 33565 zringfrac 33569 ply1dg1rt 33592 r1peuqusdeg1 35665 unitscyglem4 42211 resuppsinopn 42406 readvcot 42407 domnexpgn0cl 42546 drngmullcan 42548 drngmulrcan 42549 prjspvs 42633 |
| Copyright terms: Public domain | W3C validator |