| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifsnd | Structured version Visualization version GIF version | ||
| Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| eldifsnd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eldifsnd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eldifsnd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eldifsnd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 3 | eldifsn 4735 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-sn 4574 |
| This theorem is referenced by: prproe 4854 pfxchn 18516 chnind 18527 chnrev 18533 drngmcl 20665 r1pid2 26094 irrednzr 33217 fracfld 33274 rprmasso2 33491 rprmirredlem 33495 1arithidomlem1 33500 ufdprmidl 33506 1arithufdlem3 33511 1arithufdlem4 33512 dfufd2lem 33514 dfufd2 33515 zringfrac 33519 ply1dg1rt 33543 r1peuqusdeg1 35687 unitscyglem4 42301 resuppsinopn 42466 readvcot 42467 redivvald 42545 domnexpgn0cl 42626 drngmullcan 42628 drngmulrcan 42629 prjspvs 42713 |
| Copyright terms: Public domain | W3C validator |