![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldifsnd | Structured version Visualization version GIF version |
Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
eldifsnd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eldifsnd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
eldifsnd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eldifsnd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
3 | eldifsn 4811 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
4 | 1, 2, 3 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-sn 4649 |
This theorem is referenced by: prproe 4929 drngmcl 20772 r1pid2 26221 pfxchn 32982 chnind 32983 irrednzr 33222 fracfld 33275 rprmasso2 33519 rprmirredlem 33523 1arithidomlem1 33528 ufdprmidl 33534 1arithufdlem3 33539 1arithufdlem4 33540 dfufd2lem 33542 dfufd2 33543 zringfrac 33547 ply1dg1rt 33569 r1peuqusdeg1 35611 unitscyglem4 42155 domnexpgn0cl 42478 drngmullcan 42480 drngmulrcan 42481 prjspvs 42565 |
Copyright terms: Public domain | W3C validator |