| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifsnd | Structured version Visualization version GIF version | ||
| Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| eldifsnd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eldifsnd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eldifsnd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eldifsnd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 3 | eldifsn 4750 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-sn 4590 |
| This theorem is referenced by: prproe 4869 drngmcl 20659 r1pid2 26067 pfxchn 32935 chnind 32937 irrednzr 33201 fracfld 33258 rprmasso2 33497 rprmirredlem 33501 1arithidomlem1 33506 ufdprmidl 33512 1arithufdlem3 33517 1arithufdlem4 33518 dfufd2lem 33520 dfufd2 33521 zringfrac 33525 ply1dg1rt 33548 r1peuqusdeg1 35630 unitscyglem4 42186 resuppsinopn 42351 readvcot 42352 redivvald 42430 domnexpgn0cl 42511 drngmullcan 42513 drngmulrcan 42514 prjspvs 42598 |
| Copyright terms: Public domain | W3C validator |