MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsnd Structured version   Visualization version   GIF version

Theorem eldifsnd 4747
Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
eldifsnd.1 (𝜑𝐴𝐵)
eldifsnd.2 (𝜑𝐴𝐶)
Assertion
Ref Expression
eldifsnd (𝜑𝐴 ∈ (𝐵 ∖ {𝐶}))

Proof of Theorem eldifsnd
StepHypRef Expression
1 eldifsnd.1 . 2 (𝜑𝐴𝐵)
2 eldifsnd.2 . 2 (𝜑𝐴𝐶)
3 eldifsn 4746 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
41, 2, 3sylanbrc 583 1 (𝜑𝐴 ∈ (𝐵 ∖ {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  cdif 3908  {csn 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3446  df-dif 3914  df-sn 4586
This theorem is referenced by:  prproe  4865  drngmcl  20670  r1pid2  26100  pfxchn  32981  chnind  32983  irrednzr  33217  fracfld  33274  rprmasso2  33490  rprmirredlem  33494  1arithidomlem1  33499  ufdprmidl  33505  1arithufdlem3  33510  1arithufdlem4  33511  dfufd2lem  33513  dfufd2  33514  zringfrac  33518  ply1dg1rt  33541  r1peuqusdeg1  35623  unitscyglem4  42179  resuppsinopn  42344  readvcot  42345  redivvald  42423  domnexpgn0cl  42504  drngmullcan  42506  drngmulrcan  42507  prjspvs  42591
  Copyright terms: Public domain W3C validator