| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifsnd | Structured version Visualization version GIF version | ||
| Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| eldifsnd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eldifsnd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eldifsnd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eldifsnd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 3 | eldifsn 4746 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ {𝐶})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-sn 4586 |
| This theorem is referenced by: prproe 4865 drngmcl 20670 r1pid2 26100 pfxchn 32981 chnind 32983 irrednzr 33217 fracfld 33274 rprmasso2 33490 rprmirredlem 33494 1arithidomlem1 33499 ufdprmidl 33505 1arithufdlem3 33510 1arithufdlem4 33511 dfufd2lem 33513 dfufd2 33514 zringfrac 33518 ply1dg1rt 33541 r1peuqusdeg1 35623 unitscyglem4 42179 resuppsinopn 42344 readvcot 42345 redivvald 42423 domnexpgn0cl 42504 drngmullcan 42506 drngmulrcan 42507 prjspvs 42591 |
| Copyright terms: Public domain | W3C validator |