Step | Hyp | Ref
| Expression |
1 | | omessle.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
2 | | omessle.o |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
3 | | omessle.x |
. . . . . . 7
⊢ 𝑋 = ∪
dom 𝑂 |
4 | 2, 3 | unidmex 42598 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ V) |
5 | | omessle.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
6 | 4, 5 | ssexd 5248 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
7 | 6, 1 | ssexd 5248 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
8 | | elpwg 4536 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
9 | 7, 8 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
10 | 1, 9 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
11 | 5, 3 | sseqtrdi 3971 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ ∪ dom
𝑂) |
12 | | elpwg 4536 |
. . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 ∪ dom 𝑂 ↔ 𝐵 ⊆ ∪ dom
𝑂)) |
13 | 6, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ 𝒫 ∪ dom 𝑂 ↔ 𝐵 ⊆ ∪ dom
𝑂)) |
14 | 11, 13 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝒫 ∪ dom 𝑂) |
15 | | isome 44032 |
. . . . . 6
⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))))) |
16 | 2, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))))) |
17 | 2, 16 | mpbid 231 |
. . . 4
⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦))))) |
18 | 17 | simplrd 767 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) |
19 | | pweq 4549 |
. . . . . 6
⊢ (𝑦 = 𝐵 → 𝒫 𝑦 = 𝒫 𝐵) |
20 | 19 | raleqdv 3348 |
. . . . 5
⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂‘𝑧) ≤ (𝑂‘𝑦))) |
21 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑂‘𝑦) = (𝑂‘𝐵)) |
22 | 21 | breq2d 5086 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑂‘𝑧) ≤ (𝑂‘𝑦) ↔ (𝑂‘𝑧) ≤ (𝑂‘𝐵))) |
23 | 22 | ralbidv 3112 |
. . . . 5
⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝐵(𝑂‘𝑧) ≤ (𝑂‘𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂‘𝑧) ≤ (𝑂‘𝐵))) |
24 | 20, 23 | bitrd 278 |
. . . 4
⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂‘𝑧) ≤ (𝑂‘𝐵))) |
25 | 24 | rspcva 3559 |
. . 3
⊢ ((𝐵 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) → ∀𝑧 ∈ 𝒫 𝐵(𝑂‘𝑧) ≤ (𝑂‘𝐵)) |
26 | 14, 18, 25 | syl2anc 584 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝒫 𝐵(𝑂‘𝑧) ≤ (𝑂‘𝐵)) |
27 | | fveq2 6774 |
. . . 4
⊢ (𝑧 = 𝐴 → (𝑂‘𝑧) = (𝑂‘𝐴)) |
28 | 27 | breq1d 5084 |
. . 3
⊢ (𝑧 = 𝐴 → ((𝑂‘𝑧) ≤ (𝑂‘𝐵) ↔ (𝑂‘𝐴) ≤ (𝑂‘𝐵))) |
29 | 28 | rspcva 3559 |
. 2
⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ∀𝑧 ∈ 𝒫 𝐵(𝑂‘𝑧) ≤ (𝑂‘𝐵)) → (𝑂‘𝐴) ≤ (𝑂‘𝐵)) |
30 | 10, 26, 29 | syl2anc 584 |
1
⊢ (𝜑 → (𝑂‘𝐴) ≤ (𝑂‘𝐵)) |