Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omessle Structured version   Visualization version   GIF version

Theorem omessle 46623
Description: The outer measure of a set is greater than or equal to the measure of a subset, Definition 113A (ii) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omessle.o (𝜑𝑂 ∈ OutMeas)
omessle.x 𝑋 = dom 𝑂
omessle.b (𝜑𝐵𝑋)
omessle.a (𝜑𝐴𝐵)
Assertion
Ref Expression
omessle (𝜑 → (𝑂𝐴) ≤ (𝑂𝐵))

Proof of Theorem omessle
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omessle.a . . 3 (𝜑𝐴𝐵)
2 omessle.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 omessle.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 45174 . . . . . 6 (𝜑𝑋 ∈ V)
5 omessle.b . . . . . 6 (𝜑𝐵𝑋)
64, 5ssexd 5266 . . . . 5 (𝜑𝐵 ∈ V)
76, 1ssexd 5266 . . . 4 (𝜑𝐴 ∈ V)
8 elpwg 4554 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
97, 8syl 17 . . 3 (𝜑 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
101, 9mpbird 257 . 2 (𝜑𝐴 ∈ 𝒫 𝐵)
115, 3sseqtrdi 3971 . . . 4 (𝜑𝐵 dom 𝑂)
12 elpwg 4554 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ 𝒫 dom 𝑂𝐵 dom 𝑂))
136, 12syl 17 . . . 4 (𝜑 → (𝐵 ∈ 𝒫 dom 𝑂𝐵 dom 𝑂))
1411, 13mpbird 257 . . 3 (𝜑𝐵 ∈ 𝒫 dom 𝑂)
15 isome 46619 . . . . . 6 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
162, 15syl 17 . . . . 5 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
172, 16mpbid 232 . . . 4 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
1817simplrd 769 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
19 pweq 4565 . . . . . 6 (𝑦 = 𝐵 → 𝒫 𝑦 = 𝒫 𝐵)
2019raleqdv 3293 . . . . 5 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝑦)))
21 fveq2 6830 . . . . . . 7 (𝑦 = 𝐵 → (𝑂𝑦) = (𝑂𝐵))
2221breq2d 5107 . . . . . 6 (𝑦 = 𝐵 → ((𝑂𝑧) ≤ (𝑂𝑦) ↔ (𝑂𝑧) ≤ (𝑂𝐵)))
2322ralbidv 3156 . . . . 5 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)))
2420, 23bitrd 279 . . . 4 (𝑦 = 𝐵 → (∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦) ↔ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)))
2524rspcva 3571 . . 3 ((𝐵 ∈ 𝒫 dom 𝑂 ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) → ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵))
2614, 18, 25syl2anc 584 . 2 (𝜑 → ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵))
27 fveq2 6830 . . . 4 (𝑧 = 𝐴 → (𝑂𝑧) = (𝑂𝐴))
2827breq1d 5105 . . 3 (𝑧 = 𝐴 → ((𝑂𝑧) ≤ (𝑂𝐵) ↔ (𝑂𝐴) ≤ (𝑂𝐵)))
2928rspcva 3571 . 2 ((𝐴 ∈ 𝒫 𝐵 ∧ ∀𝑧 ∈ 𝒫 𝐵(𝑂𝑧) ≤ (𝑂𝐵)) → (𝑂𝐴) ≤ (𝑂𝐵))
3010, 26, 29syl2anc 584 1 (𝜑 → (𝑂𝐴) ≤ (𝑂𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4551   cuni 4860   class class class wbr 5095  dom cdm 5621  cres 5623  wf 6484  cfv 6488  (class class class)co 7354  ωcom 7804  cdom 8875  0cc0 11015  +∞cpnf 11152  cle 11156  [,]cicc 13252  Σ^csumge0 46487  OutMeascome 46614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ome 46615
This theorem is referenced by:  omessre  46635  omeiunltfirp  46644  carageniuncllem2  46647  caratheodorylem2  46652  omess0  46659  caragencmpl  46660
  Copyright terms: Public domain W3C validator