Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragencmpl | Structured version Visualization version GIF version |
Description: A measure built with the Caratheodory's construction is complete. See Definition 112Df of [Fremlin1] p. 19. This is Exercise 113Xa of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
caragencmpl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragencmpl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragencmpl.e | ⊢ (𝜑 → 𝐸 ⊆ 𝑋) |
caragencmpl.z | ⊢ (𝜑 → (𝑂‘𝐸) = 0) |
caragencmpl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragencmpl | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragencmpl.o | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | caragencmpl.x | . 2 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | caragencmpl.s | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | caragencmpl.e | . . 3 ⊢ (𝜑 → 𝐸 ⊆ 𝑋) | |
5 | 1, 2 | unidmex 42271 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
6 | 5, 4 | ssexd 5217 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
7 | elpwg 4516 | . . . 4 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) |
9 | 4, 8 | mpbird 260 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) |
10 | 1 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas) |
11 | 4 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝐸 ⊆ 𝑋) |
12 | caragencmpl.z | . . . . . . 7 ⊢ (𝜑 → (𝑂‘𝐸) = 0) | |
13 | 12 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝐸) = 0) |
14 | inss2 4144 | . . . . . . 7 ⊢ (𝑎 ∩ 𝐸) ⊆ 𝐸 | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎 ∩ 𝐸) ⊆ 𝐸) |
16 | 10, 2, 11, 13, 15 | omess0 43747 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∩ 𝐸)) = 0) |
17 | 16 | oveq1d 7228 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (0 +𝑒 (𝑂‘(𝑎 ∖ 𝐸)))) |
18 | difssd 4047 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∖ 𝐸) ⊆ 𝑎) | |
19 | elpwi 4522 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) | |
20 | 18, 19 | sstrd 3911 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∖ 𝐸) ⊆ 𝑋) |
21 | 20 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎 ∖ 𝐸) ⊆ 𝑋) |
22 | 10, 2, 21 | omexrcl 43720 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝐸)) ∈ ℝ*) |
23 | xaddid2 12832 | . . . . 5 ⊢ ((𝑂‘(𝑎 ∖ 𝐸)) ∈ ℝ* → (0 +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘(𝑎 ∖ 𝐸))) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (0 +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘(𝑎 ∖ 𝐸))) |
25 | 17, 24 | eqtrd 2777 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘(𝑎 ∖ 𝐸))) |
26 | 19 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎 ⊆ 𝑋) |
27 | 18 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎 ∖ 𝐸) ⊆ 𝑎) |
28 | 10, 2, 26, 27 | omessle 43711 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝐸)) ≤ (𝑂‘𝑎)) |
29 | 25, 28 | eqbrtrd 5075 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) ≤ (𝑂‘𝑎)) |
30 | 1, 2, 3, 9, 29 | caragenel2d 43745 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∖ cdif 3863 ∩ cin 3865 ⊆ wss 3866 𝒫 cpw 4513 ∪ cuni 4819 dom cdm 5551 ‘cfv 6380 (class class class)co 7213 0cc0 10729 ℝ*cxr 10866 ≤ cle 10868 +𝑒 cxad 12702 OutMeascome 43702 CaraGenccaragen 43704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-xadd 12705 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 df-sumge0 43576 df-ome 43703 df-caragen 43705 |
This theorem is referenced by: voncmpl 43834 |
Copyright terms: Public domain | W3C validator |