Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragencmpl Structured version   Visualization version   GIF version

Theorem caragencmpl 42359
Description: A measure built with the Caratheodory's construction is complete. See Definition 112Df of [Fremlin1] p. 19. This is Exercise 113Xa of [Fremlin1] p. 21 (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
caragencmpl.o (𝜑𝑂 ∈ OutMeas)
caragencmpl.x 𝑋 = dom 𝑂
caragencmpl.e (𝜑𝐸𝑋)
caragencmpl.z (𝜑 → (𝑂𝐸) = 0)
caragencmpl.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragencmpl (𝜑𝐸𝑆)

Proof of Theorem caragencmpl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragencmpl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 caragencmpl.x . 2 𝑋 = dom 𝑂
3 caragencmpl.s . 2 𝑆 = (CaraGen‘𝑂)
4 caragencmpl.e . . 3 (𝜑𝐸𝑋)
51, 2unidmex 40851 . . . . 5 (𝜑𝑋 ∈ V)
65, 4ssexd 5119 . . . 4 (𝜑𝐸 ∈ V)
7 elpwg 4461 . . . 4 (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
86, 7syl 17 . . 3 (𝜑 → (𝐸 ∈ 𝒫 𝑋𝐸𝑋))
94, 8mpbird 258 . 2 (𝜑𝐸 ∈ 𝒫 𝑋)
101adantr 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas)
114adantr 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝐸𝑋)
12 caragencmpl.z . . . . . . 7 (𝜑 → (𝑂𝐸) = 0)
1312adantr 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂𝐸) = 0)
14 inss2 4126 . . . . . . 7 (𝑎𝐸) ⊆ 𝐸
1514a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑎𝐸) ⊆ 𝐸)
1610, 2, 11, 13, 15omess0 42358 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝐸)) = 0)
1716oveq1d 7031 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (0 +𝑒 (𝑂‘(𝑎𝐸))))
18 difssd 4030 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝐸) ⊆ 𝑎)
19 elpwi 4463 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2018, 19sstrd 3899 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝐸) ⊆ 𝑋)
2120adantl 482 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑎𝐸) ⊆ 𝑋)
2210, 2, 21omexrcl 42331 . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
23 xaddid2 12485 . . . . 5 ((𝑂‘(𝑎𝐸)) ∈ ℝ* → (0 +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂‘(𝑎𝐸)))
2422, 23syl 17 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (0 +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂‘(𝑎𝐸)))
2517, 24eqtrd 2831 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂‘(𝑎𝐸)))
2619adantl 482 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
2718adantl 482 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑎𝐸) ⊆ 𝑎)
2810, 2, 26, 27omessle 42322 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎𝐸)) ≤ (𝑂𝑎))
2925, 28eqbrtrd 4984 . 2 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ≤ (𝑂𝑎))
301, 2, 3, 9, 29caragenel2d 42356 1 (𝜑𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  Vcvv 3437  cdif 3856  cin 3858  wss 3859  𝒫 cpw 4453   cuni 4745  dom cdm 5443  cfv 6225  (class class class)co 7016  0cc0 10383  *cxr 10520  cle 10522   +𝑒 cxad 12355  OutMeascome 42313  CaraGenccaragen 42315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-xadd 12358  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-sumge0 42187  df-ome 42314  df-caragen 42316
This theorem is referenced by:  voncmpl  42445
  Copyright terms: Public domain W3C validator