Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragencmpl | Structured version Visualization version GIF version |
Description: A measure built with the Caratheodory's construction is complete. See Definition 112Df of [Fremlin1] p. 19. This is Exercise 113Xa of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
caragencmpl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragencmpl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragencmpl.e | ⊢ (𝜑 → 𝐸 ⊆ 𝑋) |
caragencmpl.z | ⊢ (𝜑 → (𝑂‘𝐸) = 0) |
caragencmpl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragencmpl | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragencmpl.o | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | caragencmpl.x | . 2 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | caragencmpl.s | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | caragencmpl.e | . . 3 ⊢ (𝜑 → 𝐸 ⊆ 𝑋) | |
5 | 1, 2 | unidmex 42487 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
6 | 5, 4 | ssexd 5243 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
7 | elpwg 4533 | . . . 4 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋)) |
9 | 4, 8 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) |
10 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑂 ∈ OutMeas) |
11 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝐸 ⊆ 𝑋) |
12 | caragencmpl.z | . . . . . . 7 ⊢ (𝜑 → (𝑂‘𝐸) = 0) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘𝐸) = 0) |
14 | inss2 4160 | . . . . . . 7 ⊢ (𝑎 ∩ 𝐸) ⊆ 𝐸 | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎 ∩ 𝐸) ⊆ 𝐸) |
16 | 10, 2, 11, 13, 15 | omess0 43962 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∩ 𝐸)) = 0) |
17 | 16 | oveq1d 7270 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (0 +𝑒 (𝑂‘(𝑎 ∖ 𝐸)))) |
18 | difssd 4063 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∖ 𝐸) ⊆ 𝑎) | |
19 | elpwi 4539 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) | |
20 | 18, 19 | sstrd 3927 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∖ 𝐸) ⊆ 𝑋) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎 ∖ 𝐸) ⊆ 𝑋) |
22 | 10, 2, 21 | omexrcl 43935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝐸)) ∈ ℝ*) |
23 | xaddid2 12905 | . . . . 5 ⊢ ((𝑂‘(𝑎 ∖ 𝐸)) ∈ ℝ* → (0 +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘(𝑎 ∖ 𝐸))) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (0 +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘(𝑎 ∖ 𝐸))) |
25 | 17, 24 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘(𝑎 ∖ 𝐸))) |
26 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎 ⊆ 𝑋) |
27 | 18 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎 ∖ 𝐸) ⊆ 𝑎) |
28 | 10, 2, 26, 27 | omessle 43926 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑂‘(𝑎 ∖ 𝐸)) ≤ (𝑂‘𝑎)) |
29 | 25, 28 | eqbrtrd 5092 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) ≤ (𝑂‘𝑎)) |
30 | 1, 2, 3, 9, 29 | caragenel2d 43960 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℝ*cxr 10939 ≤ cle 10941 +𝑒 cxad 12775 OutMeascome 43917 CaraGenccaragen 43919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-sumge0 43791 df-ome 43918 df-caragen 43920 |
This theorem is referenced by: voncmpl 44049 |
Copyright terms: Public domain | W3C validator |