Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensplit Structured version   Visualization version   GIF version

Theorem caragensplit 45202
Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensplit.o (πœ‘ β†’ 𝑂 ∈ OutMeas)
caragensplit.s 𝑆 = (CaraGenβ€˜π‘‚)
caragensplit.x 𝑋 = βˆͺ dom 𝑂
caragensplit.e (πœ‘ β†’ 𝐸 ∈ 𝑆)
caragensplit.a (πœ‘ β†’ 𝐴 βŠ† 𝑋)
Assertion
Ref Expression
caragensplit (πœ‘ β†’ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄))

Proof of Theorem caragensplit
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 caragensplit.a . . . 4 (πœ‘ β†’ 𝐴 βŠ† 𝑋)
2 caragensplit.o . . . . . . 7 (πœ‘ β†’ 𝑂 ∈ OutMeas)
3 caragensplit.x . . . . . . 7 𝑋 = βˆͺ dom 𝑂
42, 3unidmex 43722 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ V)
5 ssexg 5322 . . . . . 6 ((𝐴 βŠ† 𝑋 ∧ 𝑋 ∈ V) β†’ 𝐴 ∈ V)
61, 4, 5syl2anc 584 . . . . 5 (πœ‘ β†’ 𝐴 ∈ V)
7 elpwg 4604 . . . . 5 (𝐴 ∈ V β†’ (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 βŠ† 𝑋))
86, 7syl 17 . . . 4 (πœ‘ β†’ (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 βŠ† 𝑋))
91, 8mpbird 256 . . 3 (πœ‘ β†’ 𝐴 ∈ 𝒫 𝑋)
103pweqi 4617 . . 3 𝒫 𝑋 = 𝒫 βˆͺ dom 𝑂
119, 10eleqtrdi 2843 . 2 (πœ‘ β†’ 𝐴 ∈ 𝒫 βˆͺ dom 𝑂)
12 caragensplit.e . . . 4 (πœ‘ β†’ 𝐸 ∈ 𝑆)
13 caragensplit.s . . . . 5 𝑆 = (CaraGenβ€˜π‘‚)
142, 13caragenel 45197 . . . 4 (πœ‘ β†’ (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))))
1512, 14mpbid 231 . . 3 (πœ‘ β†’ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)))
1615simprd 496 . 2 (πœ‘ β†’ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))
17 ineq1 4204 . . . . . 6 (π‘Ž = 𝐴 β†’ (π‘Ž ∩ 𝐸) = (𝐴 ∩ 𝐸))
1817fveq2d 6892 . . . . 5 (π‘Ž = 𝐴 β†’ (π‘‚β€˜(π‘Ž ∩ 𝐸)) = (π‘‚β€˜(𝐴 ∩ 𝐸)))
19 difeq1 4114 . . . . . 6 (π‘Ž = 𝐴 β†’ (π‘Ž βˆ– 𝐸) = (𝐴 βˆ– 𝐸))
2019fveq2d 6892 . . . . 5 (π‘Ž = 𝐴 β†’ (π‘‚β€˜(π‘Ž βˆ– 𝐸)) = (π‘‚β€˜(𝐴 βˆ– 𝐸)))
2118, 20oveq12d 7423 . . . 4 (π‘Ž = 𝐴 β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))))
22 fveq2 6888 . . . 4 (π‘Ž = 𝐴 β†’ (π‘‚β€˜π‘Ž) = (π‘‚β€˜π΄))
2321, 22eqeq12d 2748 . . 3 (π‘Ž = 𝐴 β†’ (((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž) ↔ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄)))
2423rspcva 3610 . 2 ((𝐴 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)) β†’ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄))
2511, 16, 24syl2anc 584 1 (πœ‘ β†’ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βˆ– cdif 3944   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907  dom cdm 5675  β€˜cfv 6540  (class class class)co 7405   +𝑒 cxad 13086  OutMeascome 45191  CaraGenccaragen 45193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-caragen 45194
This theorem is referenced by:  caragenuncllem  45214  carageniuncllem1  45223  carageniuncllem2  45224  caratheodorylem1  45228
  Copyright terms: Public domain W3C validator