![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensplit | Structured version Visualization version GIF version |
Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragensplit.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragensplit.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragensplit.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragensplit.e | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
caragensplit.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
caragensplit | ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragensplit.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
2 | caragensplit.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragensplit.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
4 | 2, 3 | unidmex 44954 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
5 | ssexg 5341 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
6 | 1, 4, 5 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
7 | elpwg 4625 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
9 | 1, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
10 | 3 | pweqi 4638 | . . 3 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
11 | 9, 10 | eleqtrdi 2854 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
12 | caragensplit.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
13 | caragensplit.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
14 | 2, 13 | caragenel 46418 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
15 | 12, 14 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
16 | 15 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
17 | ineq1 4234 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∩ 𝐸) = (𝐴 ∩ 𝐸)) | |
18 | 17 | fveq2d 6926 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∩ 𝐸)) = (𝑂‘(𝐴 ∩ 𝐸))) |
19 | difeq1 4142 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∖ 𝐸) = (𝐴 ∖ 𝐸)) | |
20 | 19 | fveq2d 6926 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∖ 𝐸)) = (𝑂‘(𝐴 ∖ 𝐸))) |
21 | 18, 20 | oveq12d 7468 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
22 | fveq2 6922 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑂‘𝑎) = (𝑂‘𝐴)) | |
23 | 21, 22 | eqeq12d 2756 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎) ↔ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴))) |
24 | 23 | rspcva 3633 | . 2 ⊢ ((𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
25 | 11, 16, 24 | syl2anc 583 | 1 ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 dom cdm 5700 ‘cfv 6575 (class class class)co 7450 +𝑒 cxad 13175 OutMeascome 46412 CaraGenccaragen 46414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-caragen 46415 |
This theorem is referenced by: caragenuncllem 46435 carageniuncllem1 46444 carageniuncllem2 46445 caratheodorylem1 46449 |
Copyright terms: Public domain | W3C validator |