| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensplit | Structured version Visualization version GIF version | ||
| Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragensplit.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragensplit.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragensplit.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| caragensplit.e | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| caragensplit.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| caragensplit | ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragensplit.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 2 | caragensplit.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 3 | caragensplit.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 4 | 2, 3 | unidmex 45146 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
| 5 | ssexg 5259 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 7 | elpwg 4550 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 9 | 1, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 10 | 3 | pweqi 4563 | . . 3 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
| 11 | 9, 10 | eleqtrdi 2841 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
| 12 | caragensplit.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
| 13 | caragensplit.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 14 | 2, 13 | caragenel 46592 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
| 15 | 12, 14 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
| 16 | 15 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
| 17 | ineq1 4160 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∩ 𝐸) = (𝐴 ∩ 𝐸)) | |
| 18 | 17 | fveq2d 6826 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∩ 𝐸)) = (𝑂‘(𝐴 ∩ 𝐸))) |
| 19 | difeq1 4066 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∖ 𝐸) = (𝐴 ∖ 𝐸)) | |
| 20 | 19 | fveq2d 6826 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∖ 𝐸)) = (𝑂‘(𝐴 ∖ 𝐸))) |
| 21 | 18, 20 | oveq12d 7364 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
| 22 | fveq2 6822 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑂‘𝑎) = (𝑂‘𝐴)) | |
| 23 | 21, 22 | eqeq12d 2747 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎) ↔ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴))) |
| 24 | 23 | rspcva 3570 | . 2 ⊢ ((𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
| 25 | 11, 16, 24 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 +𝑒 cxad 13009 OutMeascome 46586 CaraGenccaragen 46588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-caragen 46589 |
| This theorem is referenced by: caragenuncllem 46609 carageniuncllem1 46618 carageniuncllem2 46619 caratheodorylem1 46623 |
| Copyright terms: Public domain | W3C validator |