Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensplit Structured version   Visualization version   GIF version

Theorem caragensplit 45801
Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensplit.o (πœ‘ β†’ 𝑂 ∈ OutMeas)
caragensplit.s 𝑆 = (CaraGenβ€˜π‘‚)
caragensplit.x 𝑋 = βˆͺ dom 𝑂
caragensplit.e (πœ‘ β†’ 𝐸 ∈ 𝑆)
caragensplit.a (πœ‘ β†’ 𝐴 βŠ† 𝑋)
Assertion
Ref Expression
caragensplit (πœ‘ β†’ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄))

Proof of Theorem caragensplit
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 caragensplit.a . . . 4 (πœ‘ β†’ 𝐴 βŠ† 𝑋)
2 caragensplit.o . . . . . . 7 (πœ‘ β†’ 𝑂 ∈ OutMeas)
3 caragensplit.x . . . . . . 7 𝑋 = βˆͺ dom 𝑂
42, 3unidmex 44327 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ V)
5 ssexg 5317 . . . . . 6 ((𝐴 βŠ† 𝑋 ∧ 𝑋 ∈ V) β†’ 𝐴 ∈ V)
61, 4, 5syl2anc 583 . . . . 5 (πœ‘ β†’ 𝐴 ∈ V)
7 elpwg 4601 . . . . 5 (𝐴 ∈ V β†’ (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 βŠ† 𝑋))
86, 7syl 17 . . . 4 (πœ‘ β†’ (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 βŠ† 𝑋))
91, 8mpbird 257 . . 3 (πœ‘ β†’ 𝐴 ∈ 𝒫 𝑋)
103pweqi 4614 . . 3 𝒫 𝑋 = 𝒫 βˆͺ dom 𝑂
119, 10eleqtrdi 2838 . 2 (πœ‘ β†’ 𝐴 ∈ 𝒫 βˆͺ dom 𝑂)
12 caragensplit.e . . . 4 (πœ‘ β†’ 𝐸 ∈ 𝑆)
13 caragensplit.s . . . . 5 𝑆 = (CaraGenβ€˜π‘‚)
142, 13caragenel 45796 . . . 4 (πœ‘ β†’ (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))))
1512, 14mpbid 231 . . 3 (πœ‘ β†’ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)))
1615simprd 495 . 2 (πœ‘ β†’ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))
17 ineq1 4201 . . . . . 6 (π‘Ž = 𝐴 β†’ (π‘Ž ∩ 𝐸) = (𝐴 ∩ 𝐸))
1817fveq2d 6895 . . . . 5 (π‘Ž = 𝐴 β†’ (π‘‚β€˜(π‘Ž ∩ 𝐸)) = (π‘‚β€˜(𝐴 ∩ 𝐸)))
19 difeq1 4111 . . . . . 6 (π‘Ž = 𝐴 β†’ (π‘Ž βˆ– 𝐸) = (𝐴 βˆ– 𝐸))
2019fveq2d 6895 . . . . 5 (π‘Ž = 𝐴 β†’ (π‘‚β€˜(π‘Ž βˆ– 𝐸)) = (π‘‚β€˜(𝐴 βˆ– 𝐸)))
2118, 20oveq12d 7432 . . . 4 (π‘Ž = 𝐴 β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))))
22 fveq2 6891 . . . 4 (π‘Ž = 𝐴 β†’ (π‘‚β€˜π‘Ž) = (π‘‚β€˜π΄))
2321, 22eqeq12d 2743 . . 3 (π‘Ž = 𝐴 β†’ (((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž) ↔ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄)))
2423rspcva 3605 . 2 ((𝐴 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)) β†’ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄))
2511, 16, 24syl2anc 583 1 (πœ‘ β†’ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  Vcvv 3469   βˆ– cdif 3941   ∩ cin 3943   βŠ† wss 3944  π’« cpw 4598  βˆͺ cuni 4903  dom cdm 5672  β€˜cfv 6542  (class class class)co 7414   +𝑒 cxad 13108  OutMeascome 45790  CaraGenccaragen 45792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-caragen 45793
This theorem is referenced by:  caragenuncllem  45813  carageniuncllem1  45822  carageniuncllem2  45823  caratheodorylem1  45827
  Copyright terms: Public domain W3C validator