Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensplit Structured version   Visualization version   GIF version

Theorem caragensplit 46423
Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensplit.o (𝜑𝑂 ∈ OutMeas)
caragensplit.s 𝑆 = (CaraGen‘𝑂)
caragensplit.x 𝑋 = dom 𝑂
caragensplit.e (𝜑𝐸𝑆)
caragensplit.a (𝜑𝐴𝑋)
Assertion
Ref Expression
caragensplit (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))

Proof of Theorem caragensplit
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragensplit.a . . . 4 (𝜑𝐴𝑋)
2 caragensplit.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 caragensplit.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 44954 . . . . . 6 (𝜑𝑋 ∈ V)
5 ssexg 5341 . . . . . 6 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
61, 4, 5syl2anc 583 . . . . 5 (𝜑𝐴 ∈ V)
7 elpwg 4625 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
86, 7syl 17 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
91, 8mpbird 257 . . 3 (𝜑𝐴 ∈ 𝒫 𝑋)
103pweqi 4638 . . 3 𝒫 𝑋 = 𝒫 dom 𝑂
119, 10eleqtrdi 2854 . 2 (𝜑𝐴 ∈ 𝒫 dom 𝑂)
12 caragensplit.e . . . 4 (𝜑𝐸𝑆)
13 caragensplit.s . . . . 5 𝑆 = (CaraGen‘𝑂)
142, 13caragenel 46418 . . . 4 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
1512, 14mpbid 232 . . 3 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1615simprd 495 . 2 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
17 ineq1 4234 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝐸) = (𝐴𝐸))
1817fveq2d 6926 . . . . 5 (𝑎 = 𝐴 → (𝑂‘(𝑎𝐸)) = (𝑂‘(𝐴𝐸)))
19 difeq1 4142 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝐸) = (𝐴𝐸))
2019fveq2d 6926 . . . . 5 (𝑎 = 𝐴 → (𝑂‘(𝑎𝐸)) = (𝑂‘(𝐴𝐸)))
2118, 20oveq12d 7468 . . . 4 (𝑎 = 𝐴 → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
22 fveq2 6922 . . . 4 (𝑎 = 𝐴 → (𝑂𝑎) = (𝑂𝐴))
2321, 22eqeq12d 2756 . . 3 (𝑎 = 𝐴 → (((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎) ↔ ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴)))
2423rspcva 3633 . 2 ((𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)) → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
2511, 16, 24syl2anc 583 1 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  dom cdm 5700  cfv 6575  (class class class)co 7450   +𝑒 cxad 13175  OutMeascome 46412  CaraGenccaragen 46414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6527  df-fun 6577  df-fv 6583  df-ov 7453  df-caragen 46415
This theorem is referenced by:  caragenuncllem  46435  carageniuncllem1  46444  carageniuncllem2  46445  caratheodorylem1  46449
  Copyright terms: Public domain W3C validator