| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensplit | Structured version Visualization version GIF version | ||
| Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragensplit.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragensplit.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragensplit.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| caragensplit.e | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| caragensplit.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| caragensplit | ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragensplit.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 2 | caragensplit.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 3 | caragensplit.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 4 | 2, 3 | unidmex 45037 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
| 5 | ssexg 5280 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 7 | elpwg 4568 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 9 | 1, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 10 | 3 | pweqi 4581 | . . 3 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
| 11 | 9, 10 | eleqtrdi 2839 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
| 12 | caragensplit.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
| 13 | caragensplit.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 14 | 2, 13 | caragenel 46486 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
| 15 | 12, 14 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
| 16 | 15 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
| 17 | ineq1 4178 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∩ 𝐸) = (𝐴 ∩ 𝐸)) | |
| 18 | 17 | fveq2d 6864 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∩ 𝐸)) = (𝑂‘(𝐴 ∩ 𝐸))) |
| 19 | difeq1 4084 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∖ 𝐸) = (𝐴 ∖ 𝐸)) | |
| 20 | 19 | fveq2d 6864 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∖ 𝐸)) = (𝑂‘(𝐴 ∖ 𝐸))) |
| 21 | 18, 20 | oveq12d 7407 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
| 22 | fveq2 6860 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑂‘𝑎) = (𝑂‘𝐴)) | |
| 23 | 21, 22 | eqeq12d 2746 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎) ↔ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴))) |
| 24 | 23 | rspcva 3589 | . 2 ⊢ ((𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
| 25 | 11, 16, 24 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 𝒫 cpw 4565 ∪ cuni 4873 dom cdm 5640 ‘cfv 6513 (class class class)co 7389 +𝑒 cxad 13076 OutMeascome 46480 CaraGenccaragen 46482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-caragen 46483 |
| This theorem is referenced by: caragenuncllem 46503 carageniuncllem1 46512 carageniuncllem2 46513 caratheodorylem1 46517 |
| Copyright terms: Public domain | W3C validator |