Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensplit Structured version   Visualization version   GIF version

Theorem caragensplit 46498
Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensplit.o (𝜑𝑂 ∈ OutMeas)
caragensplit.s 𝑆 = (CaraGen‘𝑂)
caragensplit.x 𝑋 = dom 𝑂
caragensplit.e (𝜑𝐸𝑆)
caragensplit.a (𝜑𝐴𝑋)
Assertion
Ref Expression
caragensplit (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))

Proof of Theorem caragensplit
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragensplit.a . . . 4 (𝜑𝐴𝑋)
2 caragensplit.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 caragensplit.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 45044 . . . . . 6 (𝜑𝑋 ∈ V)
5 ssexg 5278 . . . . . 6 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
61, 4, 5syl2anc 584 . . . . 5 (𝜑𝐴 ∈ V)
7 elpwg 4566 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
86, 7syl 17 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
91, 8mpbird 257 . . 3 (𝜑𝐴 ∈ 𝒫 𝑋)
103pweqi 4579 . . 3 𝒫 𝑋 = 𝒫 dom 𝑂
119, 10eleqtrdi 2838 . 2 (𝜑𝐴 ∈ 𝒫 dom 𝑂)
12 caragensplit.e . . . 4 (𝜑𝐸𝑆)
13 caragensplit.s . . . . 5 𝑆 = (CaraGen‘𝑂)
142, 13caragenel 46493 . . . 4 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
1512, 14mpbid 232 . . 3 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1615simprd 495 . 2 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
17 ineq1 4176 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝐸) = (𝐴𝐸))
1817fveq2d 6862 . . . . 5 (𝑎 = 𝐴 → (𝑂‘(𝑎𝐸)) = (𝑂‘(𝐴𝐸)))
19 difeq1 4082 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝐸) = (𝐴𝐸))
2019fveq2d 6862 . . . . 5 (𝑎 = 𝐴 → (𝑂‘(𝑎𝐸)) = (𝑂‘(𝐴𝐸)))
2118, 20oveq12d 7405 . . . 4 (𝑎 = 𝐴 → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
22 fveq2 6858 . . . 4 (𝑎 = 𝐴 → (𝑂𝑎) = (𝑂𝐴))
2321, 22eqeq12d 2745 . . 3 (𝑎 = 𝐴 → (((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎) ↔ ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴)))
2423rspcva 3586 . 2 ((𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)) → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
2511, 16, 24syl2anc 584 1 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871  dom cdm 5638  cfv 6511  (class class class)co 7387   +𝑒 cxad 13070  OutMeascome 46487  CaraGenccaragen 46489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-caragen 46490
This theorem is referenced by:  caragenuncllem  46510  carageniuncllem1  46519  carageniuncllem2  46520  caratheodorylem1  46524
  Copyright terms: Public domain W3C validator