Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensplit Structured version   Visualization version   GIF version

Theorem caragensplit 46472
Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensplit.o (𝜑𝑂 ∈ OutMeas)
caragensplit.s 𝑆 = (CaraGen‘𝑂)
caragensplit.x 𝑋 = dom 𝑂
caragensplit.e (𝜑𝐸𝑆)
caragensplit.a (𝜑𝐴𝑋)
Assertion
Ref Expression
caragensplit (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))

Proof of Theorem caragensplit
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragensplit.a . . . 4 (𝜑𝐴𝑋)
2 caragensplit.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 caragensplit.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 45012 . . . . . 6 (𝜑𝑋 ∈ V)
5 ssexg 5303 . . . . . 6 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
61, 4, 5syl2anc 584 . . . . 5 (𝜑𝐴 ∈ V)
7 elpwg 4583 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
86, 7syl 17 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
91, 8mpbird 257 . . 3 (𝜑𝐴 ∈ 𝒫 𝑋)
103pweqi 4596 . . 3 𝒫 𝑋 = 𝒫 dom 𝑂
119, 10eleqtrdi 2843 . 2 (𝜑𝐴 ∈ 𝒫 dom 𝑂)
12 caragensplit.e . . . 4 (𝜑𝐸𝑆)
13 caragensplit.s . . . . 5 𝑆 = (CaraGen‘𝑂)
142, 13caragenel 46467 . . . 4 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
1512, 14mpbid 232 . . 3 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1615simprd 495 . 2 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
17 ineq1 4193 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝐸) = (𝐴𝐸))
1817fveq2d 6890 . . . . 5 (𝑎 = 𝐴 → (𝑂‘(𝑎𝐸)) = (𝑂‘(𝐴𝐸)))
19 difeq1 4099 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝐸) = (𝐴𝐸))
2019fveq2d 6890 . . . . 5 (𝑎 = 𝐴 → (𝑂‘(𝑎𝐸)) = (𝑂‘(𝐴𝐸)))
2118, 20oveq12d 7431 . . . 4 (𝑎 = 𝐴 → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
22 fveq2 6886 . . . 4 (𝑎 = 𝐴 → (𝑂𝑎) = (𝑂𝐴))
2321, 22eqeq12d 2750 . . 3 (𝑎 = 𝐴 → (((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎) ↔ ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴)))
2423rspcva 3603 . 2 ((𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)) → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
2511, 16, 24syl2anc 584 1 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  cdif 3928  cin 3930  wss 3931  𝒫 cpw 4580   cuni 4887  dom cdm 5665  cfv 6541  (class class class)co 7413   +𝑒 cxad 13134  OutMeascome 46461  CaraGenccaragen 46463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-caragen 46464
This theorem is referenced by:  caragenuncllem  46484  carageniuncllem1  46493  carageniuncllem2  46494  caratheodorylem1  46498
  Copyright terms: Public domain W3C validator