Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensplit | Structured version Visualization version GIF version |
Description: If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragensplit.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragensplit.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragensplit.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragensplit.e | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
caragensplit.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
caragensplit | ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragensplit.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
2 | caragensplit.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragensplit.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
4 | 2, 3 | unidmex 42832 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
5 | ssexg 5262 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
6 | 1, 4, 5 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
7 | elpwg 4548 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
9 | 1, 8 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
10 | 3 | pweqi 4561 | . . 3 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
11 | 9, 10 | eleqtrdi 2848 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
12 | caragensplit.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
13 | caragensplit.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
14 | 2, 13 | caragenel 44284 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
15 | 12, 14 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
16 | 15 | simprd 496 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
17 | ineq1 4150 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∩ 𝐸) = (𝐴 ∩ 𝐸)) | |
18 | 17 | fveq2d 6816 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∩ 𝐸)) = (𝑂‘(𝐴 ∩ 𝐸))) |
19 | difeq1 4061 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∖ 𝐸) = (𝐴 ∖ 𝐸)) | |
20 | 19 | fveq2d 6816 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑂‘(𝑎 ∖ 𝐸)) = (𝑂‘(𝐴 ∖ 𝐸))) |
21 | 18, 20 | oveq12d 7335 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
22 | fveq2 6812 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑂‘𝑎) = (𝑂‘𝐴)) | |
23 | 21, 22 | eqeq12d 2753 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎) ↔ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴))) |
24 | 23 | rspcva 3568 | . 2 ⊢ ((𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
25 | 11, 16, 24 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 Vcvv 3441 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4545 ∪ cuni 4850 dom cdm 5608 ‘cfv 6466 (class class class)co 7317 +𝑒 cxad 12926 OutMeascome 44278 CaraGenccaragen 44280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-iota 6418 df-fun 6468 df-fv 6474 df-ov 7320 df-caragen 44281 |
This theorem is referenced by: caragenuncllem 44301 carageniuncllem1 44310 carageniuncllem2 44311 caratheodorylem1 44315 |
Copyright terms: Public domain | W3C validator |