![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenuncl | Structured version Visualization version GIF version |
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenuncl.1 | β’ (π β π β OutMeas) |
caragenuncl.2 | β’ π = (CaraGenβπ) |
caragenuncl.3 | β’ (π β πΈ β π) |
caragenuncl.4 | β’ (π β πΉ β π) |
Ref | Expression |
---|---|
caragenuncl | β’ (π β (πΈ βͺ πΉ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenuncl.1 | . 2 β’ (π β π β OutMeas) | |
2 | eqid 2727 | . 2 β’ βͺ dom π = βͺ dom π | |
3 | caragenuncl.2 | . 2 β’ π = (CaraGenβπ) | |
4 | caragenuncl.3 | . . . . 5 β’ (π β πΈ β π) | |
5 | 1, 3, 4, 2 | caragenelss 45802 | . . . 4 β’ (π β πΈ β βͺ dom π) |
6 | caragenuncl.4 | . . . . 5 β’ (π β πΉ β π) | |
7 | 1, 3, 6, 2 | caragenelss 45802 | . . . 4 β’ (π β πΉ β βͺ dom π) |
8 | 5, 7 | unssd 4182 | . . 3 β’ (π β (πΈ βͺ πΉ) β βͺ dom π) |
9 | 1, 2 | unidmex 44327 | . . . . 5 β’ (π β βͺ dom π β V) |
10 | ssexg 5317 | . . . . 5 β’ (((πΈ βͺ πΉ) β βͺ dom π β§ βͺ dom π β V) β (πΈ βͺ πΉ) β V) | |
11 | 8, 9, 10 | syl2anc 583 | . . . 4 β’ (π β (πΈ βͺ πΉ) β V) |
12 | elpwg 4601 | . . . 4 β’ ((πΈ βͺ πΉ) β V β ((πΈ βͺ πΉ) β π« βͺ dom π β (πΈ βͺ πΉ) β βͺ dom π)) | |
13 | 11, 12 | syl 17 | . . 3 β’ (π β ((πΈ βͺ πΉ) β π« βͺ dom π β (πΈ βͺ πΉ) β βͺ dom π)) |
14 | 8, 13 | mpbird 257 | . 2 β’ (π β (πΈ βͺ πΉ) β π« βͺ dom π) |
15 | 1 | adantr 480 | . . 3 β’ ((π β§ π β π« βͺ dom π) β π β OutMeas) |
16 | 4 | adantr 480 | . . 3 β’ ((π β§ π β π« βͺ dom π) β πΈ β π) |
17 | 6 | adantr 480 | . . 3 β’ ((π β§ π β π« βͺ dom π) β πΉ β π) |
18 | elpwi 4605 | . . . 4 β’ (π β π« βͺ dom π β π β βͺ dom π) | |
19 | 18 | adantl 481 | . . 3 β’ ((π β§ π β π« βͺ dom π) β π β βͺ dom π) |
20 | 15, 3, 16, 17, 2, 19 | caragenuncllem 45813 | . 2 β’ ((π β§ π β π« βͺ dom π) β ((πβ(π β© (πΈ βͺ πΉ))) +π (πβ(π β (πΈ βͺ πΉ)))) = (πβπ)) |
21 | 1, 2, 3, 14, 20 | carageneld 45803 | 1 β’ (π β (πΈ βͺ πΉ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 Vcvv 3469 βͺ cun 3942 β wss 3944 π« cpw 4598 βͺ cuni 4903 dom cdm 5672 βcfv 6542 OutMeascome 45790 CaraGenccaragen 45792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-addass 11189 ax-i2m1 11192 ax-rnegex 11195 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-xadd 13111 df-icc 13349 df-ome 45791 df-caragen 45793 |
This theorem is referenced by: caragenfiiuncl 45816 |
Copyright terms: Public domain | W3C validator |