Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncl Structured version   Visualization version   GIF version

Theorem caragenuncl 46434
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncl.1 (𝜑𝑂 ∈ OutMeas)
caragenuncl.2 𝑆 = (CaraGen‘𝑂)
caragenuncl.3 (𝜑𝐸𝑆)
caragenuncl.4 (𝜑𝐹𝑆)
Assertion
Ref Expression
caragenuncl (𝜑 → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem caragenuncl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenuncl.1 . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2740 . 2 dom 𝑂 = dom 𝑂
3 caragenuncl.2 . 2 𝑆 = (CaraGen‘𝑂)
4 caragenuncl.3 . . . . 5 (𝜑𝐸𝑆)
51, 3, 4, 2caragenelss 46422 . . . 4 (𝜑𝐸 dom 𝑂)
6 caragenuncl.4 . . . . 5 (𝜑𝐹𝑆)
71, 3, 6, 2caragenelss 46422 . . . 4 (𝜑𝐹 dom 𝑂)
85, 7unssd 4215 . . 3 (𝜑 → (𝐸𝐹) ⊆ dom 𝑂)
91, 2unidmex 44952 . . . . 5 (𝜑 dom 𝑂 ∈ V)
10 ssexg 5341 . . . . 5 (((𝐸𝐹) ⊆ dom 𝑂 dom 𝑂 ∈ V) → (𝐸𝐹) ∈ V)
118, 9, 10syl2anc 583 . . . 4 (𝜑 → (𝐸𝐹) ∈ V)
12 elpwg 4625 . . . 4 ((𝐸𝐹) ∈ V → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
1311, 12syl 17 . . 3 (𝜑 → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
148, 13mpbird 257 . 2 (𝜑 → (𝐸𝐹) ∈ 𝒫 dom 𝑂)
151adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
164adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐸𝑆)
176adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐹𝑆)
18 elpwi 4629 . . . 4 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1918adantl 481 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
2015, 3, 16, 17, 2, 19caragenuncllem 46433 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝑎 ∖ (𝐸𝐹)))) = (𝑂𝑎))
211, 2, 3, 14, 20carageneld 46423 1 (𝜑 → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976  𝒫 cpw 4622   cuni 4931  dom cdm 5700  cfv 6573  OutMeascome 46410  CaraGenccaragen 46412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-addass 11249  ax-i2m1 11252  ax-rnegex 11255  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-xadd 13176  df-icc 13414  df-ome 46411  df-caragen 46413
This theorem is referenced by:  caragenfiiuncl  46436
  Copyright terms: Public domain W3C validator