Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenuncl | Structured version Visualization version GIF version |
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenuncl.1 | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenuncl.2 | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragenuncl.3 | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
caragenuncl.4 | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Ref | Expression |
---|---|
caragenuncl | ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenuncl.1 | . 2 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | eqid 2738 | . 2 ⊢ ∪ dom 𝑂 = ∪ dom 𝑂 | |
3 | caragenuncl.2 | . 2 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | caragenuncl.3 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
5 | 1, 3, 4, 2 | caragenelss 43929 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ∪ dom 𝑂) |
6 | caragenuncl.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
7 | 1, 3, 6, 2 | caragenelss 43929 | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ ∪ dom 𝑂) |
8 | 5, 7 | unssd 4116 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ⊆ ∪ dom 𝑂) |
9 | 1, 2 | unidmex 42487 | . . . . 5 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
10 | ssexg 5242 | . . . . 5 ⊢ (((𝐸 ∪ 𝐹) ⊆ ∪ dom 𝑂 ∧ ∪ dom 𝑂 ∈ V) → (𝐸 ∪ 𝐹) ∈ V) | |
11 | 8, 9, 10 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
12 | elpwg 4533 | . . . 4 ⊢ ((𝐸 ∪ 𝐹) ∈ V → ((𝐸 ∪ 𝐹) ∈ 𝒫 ∪ dom 𝑂 ↔ (𝐸 ∪ 𝐹) ⊆ ∪ dom 𝑂)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐸 ∪ 𝐹) ∈ 𝒫 ∪ dom 𝑂 ↔ (𝐸 ∪ 𝐹) ⊆ ∪ dom 𝑂)) |
14 | 8, 13 | mpbird 256 | . 2 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝒫 ∪ dom 𝑂) |
15 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑂 ∈ OutMeas) |
16 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝐸 ∈ 𝑆) |
17 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝐹 ∈ 𝑆) |
18 | elpwi 4539 | . . . 4 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom 𝑂) | |
19 | 18 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ dom 𝑂) |
20 | 15, 3, 16, 17, 2, 19 | caragenuncllem 43940 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ (𝐸 ∪ 𝐹))) +𝑒 (𝑂‘(𝑎 ∖ (𝐸 ∪ 𝐹)))) = (𝑂‘𝑎)) |
21 | 1, 2, 3, 14, 20 | carageneld 43930 | 1 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 dom cdm 5580 ‘cfv 6418 OutMeascome 43917 CaraGenccaragen 43919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-addass 10867 ax-i2m1 10870 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-xadd 12778 df-icc 13015 df-ome 43918 df-caragen 43920 |
This theorem is referenced by: caragenfiiuncl 43943 |
Copyright terms: Public domain | W3C validator |