Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncl Structured version   Visualization version   GIF version

Theorem caragenuncl 46469
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncl.1 (𝜑𝑂 ∈ OutMeas)
caragenuncl.2 𝑆 = (CaraGen‘𝑂)
caragenuncl.3 (𝜑𝐸𝑆)
caragenuncl.4 (𝜑𝐹𝑆)
Assertion
Ref Expression
caragenuncl (𝜑 → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem caragenuncl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenuncl.1 . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2735 . 2 dom 𝑂 = dom 𝑂
3 caragenuncl.2 . 2 𝑆 = (CaraGen‘𝑂)
4 caragenuncl.3 . . . . 5 (𝜑𝐸𝑆)
51, 3, 4, 2caragenelss 46457 . . . 4 (𝜑𝐸 dom 𝑂)
6 caragenuncl.4 . . . . 5 (𝜑𝐹𝑆)
71, 3, 6, 2caragenelss 46457 . . . 4 (𝜑𝐹 dom 𝑂)
85, 7unssd 4202 . . 3 (𝜑 → (𝐸𝐹) ⊆ dom 𝑂)
91, 2unidmex 44990 . . . . 5 (𝜑 dom 𝑂 ∈ V)
10 ssexg 5329 . . . . 5 (((𝐸𝐹) ⊆ dom 𝑂 dom 𝑂 ∈ V) → (𝐸𝐹) ∈ V)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐸𝐹) ∈ V)
12 elpwg 4608 . . . 4 ((𝐸𝐹) ∈ V → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
1311, 12syl 17 . . 3 (𝜑 → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
148, 13mpbird 257 . 2 (𝜑 → (𝐸𝐹) ∈ 𝒫 dom 𝑂)
151adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
164adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐸𝑆)
176adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐹𝑆)
18 elpwi 4612 . . . 4 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1918adantl 481 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
2015, 3, 16, 17, 2, 19caragenuncllem 46468 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝑎 ∖ (𝐸𝐹)))) = (𝑂𝑎))
211, 2, 3, 14, 20carageneld 46458 1 (𝜑 → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  wss 3963  𝒫 cpw 4605   cuni 4912  dom cdm 5689  cfv 6563  OutMeascome 46445  CaraGenccaragen 46447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-addass 11218  ax-i2m1 11221  ax-rnegex 11224  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-xadd 13153  df-icc 13391  df-ome 46446  df-caragen 46448
This theorem is referenced by:  caragenfiiuncl  46471
  Copyright terms: Public domain W3C validator