Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncl Structured version   Visualization version   GIF version

Theorem caragenuncl 43009
 Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncl.1 (𝜑𝑂 ∈ OutMeas)
caragenuncl.2 𝑆 = (CaraGen‘𝑂)
caragenuncl.3 (𝜑𝐸𝑆)
caragenuncl.4 (𝜑𝐹𝑆)
Assertion
Ref Expression
caragenuncl (𝜑 → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem caragenuncl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenuncl.1 . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2824 . 2 dom 𝑂 = dom 𝑂
3 caragenuncl.2 . 2 𝑆 = (CaraGen‘𝑂)
4 caragenuncl.3 . . . . 5 (𝜑𝐸𝑆)
51, 3, 4, 2caragenelss 42997 . . . 4 (𝜑𝐸 dom 𝑂)
6 caragenuncl.4 . . . . 5 (𝜑𝐹𝑆)
71, 3, 6, 2caragenelss 42997 . . . 4 (𝜑𝐹 dom 𝑂)
85, 7unssd 4146 . . 3 (𝜑 → (𝐸𝐹) ⊆ dom 𝑂)
91, 2unidmex 41535 . . . . 5 (𝜑 dom 𝑂 ∈ V)
10 ssexg 5210 . . . . 5 (((𝐸𝐹) ⊆ dom 𝑂 dom 𝑂 ∈ V) → (𝐸𝐹) ∈ V)
118, 9, 10syl2anc 587 . . . 4 (𝜑 → (𝐸𝐹) ∈ V)
12 elpwg 4523 . . . 4 ((𝐸𝐹) ∈ V → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
1311, 12syl 17 . . 3 (𝜑 → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
148, 13mpbird 260 . 2 (𝜑 → (𝐸𝐹) ∈ 𝒫 dom 𝑂)
151adantr 484 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
164adantr 484 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐸𝑆)
176adantr 484 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐹𝑆)
18 elpwi 4529 . . . 4 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1918adantl 485 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
2015, 3, 16, 17, 2, 19caragenuncllem 43008 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝑎 ∖ (𝐸𝐹)))) = (𝑂𝑎))
211, 2, 3, 14, 20carageneld 42998 1 (𝜑 → (𝐸𝐹) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3479   ∪ cun 3916   ⊆ wss 3918  𝒫 cpw 4520  ∪ cuni 4821  dom cdm 5538  ‘cfv 6338  OutMeascome 42985  CaraGenccaragen 42987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-addass 10589  ax-i2m1 10592  ax-rnegex 10595  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-po 5457  df-so 5458  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7674  df-2nd 7675  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-xadd 12496  df-icc 12733  df-ome 42986  df-caragen 42988 This theorem is referenced by:  caragenfiiuncl  43011
 Copyright terms: Public domain W3C validator