Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncl Structured version   Visualization version   GIF version

Theorem caragenuncl 46514
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncl.1 (𝜑𝑂 ∈ OutMeas)
caragenuncl.2 𝑆 = (CaraGen‘𝑂)
caragenuncl.3 (𝜑𝐸𝑆)
caragenuncl.4 (𝜑𝐹𝑆)
Assertion
Ref Expression
caragenuncl (𝜑 → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem caragenuncl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenuncl.1 . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2729 . 2 dom 𝑂 = dom 𝑂
3 caragenuncl.2 . 2 𝑆 = (CaraGen‘𝑂)
4 caragenuncl.3 . . . . 5 (𝜑𝐸𝑆)
51, 3, 4, 2caragenelss 46502 . . . 4 (𝜑𝐸 dom 𝑂)
6 caragenuncl.4 . . . . 5 (𝜑𝐹𝑆)
71, 3, 6, 2caragenelss 46502 . . . 4 (𝜑𝐹 dom 𝑂)
85, 7unssd 4143 . . 3 (𝜑 → (𝐸𝐹) ⊆ dom 𝑂)
91, 2unidmex 45048 . . . . 5 (𝜑 dom 𝑂 ∈ V)
10 ssexg 5262 . . . . 5 (((𝐸𝐹) ⊆ dom 𝑂 dom 𝑂 ∈ V) → (𝐸𝐹) ∈ V)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐸𝐹) ∈ V)
12 elpwg 4554 . . . 4 ((𝐸𝐹) ∈ V → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
1311, 12syl 17 . . 3 (𝜑 → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
148, 13mpbird 257 . 2 (𝜑 → (𝐸𝐹) ∈ 𝒫 dom 𝑂)
151adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
164adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐸𝑆)
176adantr 480 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐹𝑆)
18 elpwi 4558 . . . 4 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1918adantl 481 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
2015, 3, 16, 17, 2, 19caragenuncllem 46513 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝑎 ∖ (𝐸𝐹)))) = (𝑂𝑎))
211, 2, 3, 14, 20carageneld 46503 1 (𝜑 → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  wss 3903  𝒫 cpw 4551   cuni 4858  dom cdm 5619  cfv 6482  OutMeascome 46490  CaraGenccaragen 46492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-addass 11074  ax-i2m1 11077  ax-rnegex 11080  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-xadd 13015  df-icc 13255  df-ome 46491  df-caragen 46493
This theorem is referenced by:  caragenfiiuncl  46516
  Copyright terms: Public domain W3C validator