Step | Hyp | Ref
| Expression |
1 | | omeunile.ct |
. 2
⊢ (𝜑 → 𝑌 ≼ ω) |
2 | | omeunile.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) |
3 | | omeunile.o |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
4 | | omeunile.x |
. . . . . . . . 9
⊢ 𝑋 = ∪
dom 𝑂 |
5 | 3, 4 | unidmex 42487 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ V) |
6 | 5 | pwexd 5297 |
. . . . . . 7
⊢ (𝜑 → 𝒫 𝑋 ∈ V) |
7 | | ssexg 5242 |
. . . . . . 7
⊢ ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V) |
8 | 2, 6, 7 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ V) |
9 | | elpwg 4533 |
. . . . . 6
⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫
𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
11 | 2, 10 | mpbird 256 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝒫 𝒫 𝑋) |
12 | | omedm 43927 |
. . . . . . 7
⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) |
13 | 3, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝑂 = 𝒫 ∪
dom 𝑂) |
14 | 4 | pweqi 4548 |
. . . . . . . 8
⊢ 𝒫
𝑋 = 𝒫 ∪ dom 𝑂 |
15 | 14 | eqcomi 2747 |
. . . . . . 7
⊢ 𝒫
∪ dom 𝑂 = 𝒫 𝑋 |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
17 | 13, 16 | eqtr2d 2779 |
. . . . 5
⊢ (𝜑 → 𝒫 𝑋 = dom 𝑂) |
18 | 17 | pweqd 4549 |
. . . 4
⊢ (𝜑 → 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂) |
19 | 11, 18 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝒫 dom 𝑂) |
20 | | isome 43922 |
. . . . . 6
⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑥 ∈ 𝒫 𝑦(𝑂‘𝑥) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))))) |
21 | 3, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑥 ∈ 𝒫 𝑦(𝑂‘𝑥) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))))) |
22 | 3, 21 | mpbid 231 |
. . . 4
⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑥 ∈ 𝒫 𝑦(𝑂‘𝑥) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦))))) |
23 | 22 | simprd 495 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))) |
24 | | breq1 5073 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑦 ≼ ω ↔ 𝑌 ≼ ω)) |
25 | | unieq 4847 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → ∪ 𝑦 = ∪
𝑌) |
26 | 25 | fveq2d 6760 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑂‘∪ 𝑦) = (𝑂‘∪ 𝑌)) |
27 | | reseq2 5875 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑂 ↾ 𝑦) = (𝑂 ↾ 𝑌)) |
28 | 27 | fveq2d 6760 |
. . . . . 6
⊢ (𝑦 = 𝑌 →
(Σ^‘(𝑂 ↾ 𝑦)) =
(Σ^‘(𝑂 ↾ 𝑌))) |
29 | 26, 28 | breq12d 5083 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)) ↔ (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌)))) |
30 | 24, 29 | imbi12d 344 |
. . . 4
⊢ (𝑦 = 𝑌 → ((𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦))) ↔ (𝑌 ≼ ω → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌))))) |
31 | 30 | rspcva 3550 |
. . 3
⊢ ((𝑌 ∈ 𝒫 dom 𝑂 ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))) → (𝑌 ≼ ω → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌)))) |
32 | 19, 23, 31 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝑌 ≼ ω → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌)))) |
33 | 1, 32 | mpd 15 |
1
⊢ (𝜑 → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌))) |