Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeunile Structured version   Visualization version   GIF version

Theorem omeunile 42937
Description: The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeunile.o (𝜑𝑂 ∈ OutMeas)
omeunile.x 𝑋 = dom 𝑂
omeunile.y (𝜑𝑌 ⊆ 𝒫 𝑋)
omeunile.ct (𝜑𝑌 ≼ ω)
Assertion
Ref Expression
omeunile (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))

Proof of Theorem omeunile
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeunile.ct . 2 (𝜑𝑌 ≼ ω)
2 omeunile.y . . . . 5 (𝜑𝑌 ⊆ 𝒫 𝑋)
3 omeunile.o . . . . . . . . 9 (𝜑𝑂 ∈ OutMeas)
4 omeunile.x . . . . . . . . 9 𝑋 = dom 𝑂
53, 4unidmex 41469 . . . . . . . 8 (𝜑𝑋 ∈ V)
65pwexd 5253 . . . . . . 7 (𝜑 → 𝒫 𝑋 ∈ V)
7 ssexg 5200 . . . . . . 7 ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V)
82, 6, 7syl2anc 587 . . . . . 6 (𝜑𝑌 ∈ V)
9 elpwg 4515 . . . . . 6 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
108, 9syl 17 . . . . 5 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
112, 10mpbird 260 . . . 4 (𝜑𝑌 ∈ 𝒫 𝒫 𝑋)
12 omedm 42931 . . . . . . 7 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
133, 12syl 17 . . . . . 6 (𝜑 → dom 𝑂 = 𝒫 dom 𝑂)
144pweqi 4530 . . . . . . . 8 𝒫 𝑋 = 𝒫 dom 𝑂
1514eqcomi 2830 . . . . . . 7 𝒫 dom 𝑂 = 𝒫 𝑋
1615a1i 11 . . . . . 6 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
1713, 16eqtr2d 2857 . . . . 5 (𝜑 → 𝒫 𝑋 = dom 𝑂)
1817pweqd 4531 . . . 4 (𝜑 → 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂)
1911, 18eleqtrd 2914 . . 3 (𝜑𝑌 ∈ 𝒫 dom 𝑂)
20 isome 42926 . . . . . 6 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦(𝑂𝑥) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
213, 20syl 17 . . . . 5 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦(𝑂𝑥) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
223, 21mpbid 235 . . . 4 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦(𝑂𝑥) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2322simprd 499 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
24 breq1 5042 . . . . 5 (𝑦 = 𝑌 → (𝑦 ≼ ω ↔ 𝑌 ≼ ω))
25 unieq 4822 . . . . . . 7 (𝑦 = 𝑌 𝑦 = 𝑌)
2625fveq2d 6647 . . . . . 6 (𝑦 = 𝑌 → (𝑂 𝑦) = (𝑂 𝑌))
27 reseq2 5821 . . . . . . 7 (𝑦 = 𝑌 → (𝑂𝑦) = (𝑂𝑌))
2827fveq2d 6647 . . . . . 6 (𝑦 = 𝑌 → (Σ^‘(𝑂𝑦)) = (Σ^‘(𝑂𝑌)))
2926, 28breq12d 5052 . . . . 5 (𝑦 = 𝑌 → ((𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)) ↔ (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌))))
3024, 29imbi12d 348 . . . 4 (𝑦 = 𝑌 → ((𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))) ↔ (𝑌 ≼ ω → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))))
3130rspcva 3598 . . 3 ((𝑌 ∈ 𝒫 dom 𝑂 ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))) → (𝑌 ≼ ω → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌))))
3219, 23, 31syl2anc 587 . 2 (𝜑 → (𝑌 ≼ ω → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌))))
331, 32mpd 15 1 (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  Vcvv 3471  wss 3910  c0 4266  𝒫 cpw 4512   cuni 4811   class class class wbr 5039  dom cdm 5528  cres 5530  wf 6324  cfv 6328  (class class class)co 7130  ωcom 7555  cdom 8482  0cc0 10514  +∞cpnf 10649  cle 10653  [,]cicc 12719  Σ^csumge0 42794  OutMeascome 42921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ome 42922
This theorem is referenced by:  omeunle  42948  omeiunle  42949
  Copyright terms: Public domain W3C validator