Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeunle Structured version   Visualization version   GIF version

Theorem omeunle 46521
Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeunle.o (𝜑𝑂 ∈ OutMeas)
omeunle.x 𝑋 = dom 𝑂
omeunle.a (𝜑𝐴𝑋)
omeunle.b (𝜑𝐵𝑋)
Assertion
Ref Expression
omeunle (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))

Proof of Theorem omeunle
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 omeunle.a . . . . . 6 (𝜑𝐴𝑋)
2 omeunle.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 omeunle.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 45051 . . . . . 6 (𝜑𝑋 ∈ V)
5 ssexg 5281 . . . . . 6 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
61, 4, 5syl2anc 584 . . . . 5 (𝜑𝐴 ∈ V)
7 omeunle.b . . . . . 6 (𝜑𝐵𝑋)
8 ssexg 5281 . . . . . 6 ((𝐵𝑋𝑋 ∈ V) → 𝐵 ∈ V)
97, 4, 8syl2anc 584 . . . . 5 (𝜑𝐵 ∈ V)
10 uniprg 4890 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
116, 9, 10syl2anc 584 . . . 4 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
1211eqcomd 2736 . . 3 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
1312fveq2d 6865 . 2 (𝜑 → (𝑂‘(𝐴𝐵)) = (𝑂 {𝐴, 𝐵}))
14 iccssxr 13398 . . . 4 (0[,]+∞) ⊆ ℝ*
151, 7unssd 4158 . . . . . 6 (𝜑 → (𝐴𝐵) ⊆ 𝑋)
1611, 15eqsstrd 3984 . . . . 5 (𝜑 {𝐴, 𝐵} ⊆ 𝑋)
172, 3, 16omecl 46508 . . . 4 (𝜑 → (𝑂 {𝐴, 𝐵}) ∈ (0[,]+∞))
1814, 17sselid 3947 . . 3 (𝜑 → (𝑂 {𝐴, 𝐵}) ∈ ℝ*)
19 prfi 9281 . . . . . 6 {𝐴, 𝐵} ∈ Fin
2019elexi 3473 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵} ∈ V)
222, 3omef 46501 . . . . 5 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
23 elpwg 4569 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
246, 23syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
251, 24mpbird 257 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 𝑋)
26 elpwg 4569 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
279, 26syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
287, 27mpbird 257 . . . . . . 7 (𝜑𝐵 ∈ 𝒫 𝑋)
2925, 28jca 511 . . . . . 6 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋))
30 prssg 4786 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋))
316, 9, 30syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋))
3229, 31mpbid 232 . . . . 5 (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝑋)
3322, 32fssresd 6730 . . . 4 (𝜑 → (𝑂 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
3421, 33sge0xrcl 46390 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ∈ ℝ*)
352, 3, 1omecl 46508 . . . . 5 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
3614, 35sselid 3947 . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ*)
372, 3, 7omecl 46508 . . . . 5 (𝜑 → (𝑂𝐵) ∈ (0[,]+∞))
3814, 37sselid 3947 . . . 4 (𝜑 → (𝑂𝐵) ∈ ℝ*)
3936, 38xaddcld 13268 . . 3 (𝜑 → ((𝑂𝐴) +𝑒 (𝑂𝐵)) ∈ ℝ*)
40 isfinite 9612 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4140biimpi 216 . . . . . . 7 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
42 sdomdom 8954 . . . . . . 7 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
4341, 42syl 17 . . . . . 6 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
4419, 43ax-mp 5 . . . . 5 {𝐴, 𝐵} ≼ ω
4544a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵} ≼ ω)
462, 3, 32, 45omeunile 46510 . . 3 (𝜑 → (𝑂 {𝐴, 𝐵}) ≤ (Σ^‘(𝑂 ↾ {𝐴, 𝐵})))
4722, 32feqresmpt 6933 . . . . 5 (𝜑 → (𝑂 ↾ {𝐴, 𝐵}) = (𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘)))
4847fveq2d 6865 . . . 4 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘))))
49 fveq2 6861 . . . . 5 (𝑘 = 𝐴 → (𝑂𝑘) = (𝑂𝐴))
50 fveq2 6861 . . . . 5 (𝑘 = 𝐵 → (𝑂𝑘) = (𝑂𝐵))
516, 9, 35, 37, 49, 50sge0prle 46406 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘))) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5248, 51eqbrtrd 5132 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5318, 34, 39, 46, 52xrletrd 13129 . 2 (𝜑 → (𝑂 {𝐴, 𝐵}) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5413, 53eqbrtrd 5132 1 (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  wss 3917  𝒫 cpw 4566  {cpr 4594   cuni 4874   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  csdm 8920  Fincfn 8921  0cc0 11075  +∞cpnf 11212  *cxr 11214  cle 11216   +𝑒 cxad 13077  [,]cicc 13316  Σ^csumge0 46367  OutMeascome 46494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-sumge0 46368  df-ome 46495
This theorem is referenced by:  omelesplit  46523
  Copyright terms: Public domain W3C validator