Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeunle Structured version   Visualization version   GIF version

Theorem omeunle 45219
Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeunle.o (𝜑𝑂 ∈ OutMeas)
omeunle.x 𝑋 = dom 𝑂
omeunle.a (𝜑𝐴𝑋)
omeunle.b (𝜑𝐵𝑋)
Assertion
Ref Expression
omeunle (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))

Proof of Theorem omeunle
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 omeunle.a . . . . . 6 (𝜑𝐴𝑋)
2 omeunle.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 omeunle.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 43723 . . . . . 6 (𝜑𝑋 ∈ V)
5 ssexg 5323 . . . . . 6 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
61, 4, 5syl2anc 585 . . . . 5 (𝜑𝐴 ∈ V)
7 omeunle.b . . . . . 6 (𝜑𝐵𝑋)
8 ssexg 5323 . . . . . 6 ((𝐵𝑋𝑋 ∈ V) → 𝐵 ∈ V)
97, 4, 8syl2anc 585 . . . . 5 (𝜑𝐵 ∈ V)
10 uniprg 4925 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
116, 9, 10syl2anc 585 . . . 4 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
1211eqcomd 2739 . . 3 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
1312fveq2d 6893 . 2 (𝜑 → (𝑂‘(𝐴𝐵)) = (𝑂 {𝐴, 𝐵}))
14 iccssxr 13404 . . . 4 (0[,]+∞) ⊆ ℝ*
151, 7unssd 4186 . . . . . 6 (𝜑 → (𝐴𝐵) ⊆ 𝑋)
1611, 15eqsstrd 4020 . . . . 5 (𝜑 {𝐴, 𝐵} ⊆ 𝑋)
172, 3, 16omecl 45206 . . . 4 (𝜑 → (𝑂 {𝐴, 𝐵}) ∈ (0[,]+∞))
1814, 17sselid 3980 . . 3 (𝜑 → (𝑂 {𝐴, 𝐵}) ∈ ℝ*)
19 prfi 9319 . . . . . 6 {𝐴, 𝐵} ∈ Fin
2019elexi 3494 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵} ∈ V)
222, 3omef 45199 . . . . 5 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
23 elpwg 4605 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
246, 23syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
251, 24mpbird 257 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 𝑋)
26 elpwg 4605 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
279, 26syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
287, 27mpbird 257 . . . . . . 7 (𝜑𝐵 ∈ 𝒫 𝑋)
2925, 28jca 513 . . . . . 6 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋))
30 prssg 4822 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋))
316, 9, 30syl2anc 585 . . . . . 6 (𝜑 → ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋))
3229, 31mpbid 231 . . . . 5 (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝑋)
3322, 32fssresd 6756 . . . 4 (𝜑 → (𝑂 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
3421, 33sge0xrcl 45088 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ∈ ℝ*)
352, 3, 1omecl 45206 . . . . 5 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
3614, 35sselid 3980 . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ*)
372, 3, 7omecl 45206 . . . . 5 (𝜑 → (𝑂𝐵) ∈ (0[,]+∞))
3814, 37sselid 3980 . . . 4 (𝜑 → (𝑂𝐵) ∈ ℝ*)
3936, 38xaddcld 13277 . . 3 (𝜑 → ((𝑂𝐴) +𝑒 (𝑂𝐵)) ∈ ℝ*)
40 isfinite 9644 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4140biimpi 215 . . . . . . 7 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
42 sdomdom 8973 . . . . . . 7 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
4341, 42syl 17 . . . . . 6 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
4419, 43ax-mp 5 . . . . 5 {𝐴, 𝐵} ≼ ω
4544a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵} ≼ ω)
462, 3, 32, 45omeunile 45208 . . 3 (𝜑 → (𝑂 {𝐴, 𝐵}) ≤ (Σ^‘(𝑂 ↾ {𝐴, 𝐵})))
4722, 32feqresmpt 6959 . . . . 5 (𝜑 → (𝑂 ↾ {𝐴, 𝐵}) = (𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘)))
4847fveq2d 6893 . . . 4 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘))))
49 fveq2 6889 . . . . 5 (𝑘 = 𝐴 → (𝑂𝑘) = (𝑂𝐴))
50 fveq2 6889 . . . . 5 (𝑘 = 𝐵 → (𝑂𝑘) = (𝑂𝐵))
516, 9, 35, 37, 49, 50sge0prle 45104 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘))) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5248, 51eqbrtrd 5170 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5318, 34, 39, 46, 52xrletrd 13138 . 2 (𝜑 → (𝑂 {𝐴, 𝐵}) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5413, 53eqbrtrd 5170 1 (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cun 3946  wss 3948  𝒫 cpw 4602  {cpr 4630   cuni 4908   class class class wbr 5148  cmpt 5231  dom cdm 5676  cres 5678  cfv 6541  (class class class)co 7406  ωcom 7852  cdom 8934  csdm 8935  Fincfn 8936  0cc0 11107  +∞cpnf 11242  *cxr 11244  cle 11246   +𝑒 cxad 13087  [,]cicc 13324  Σ^csumge0 45065  OutMeascome 45192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-oi 9502  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-xadd 13090  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630  df-sumge0 45066  df-ome 45193
This theorem is referenced by:  omelesplit  45221
  Copyright terms: Public domain W3C validator