Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeunle Structured version   Visualization version   GIF version

Theorem omeunle 42229
Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeunle.o (𝜑𝑂 ∈ OutMeas)
omeunle.x 𝑋 = dom 𝑂
omeunle.a (𝜑𝐴𝑋)
omeunle.b (𝜑𝐵𝑋)
Assertion
Ref Expression
omeunle (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))

Proof of Theorem omeunle
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 omeunle.a . . . . . 6 (𝜑𝐴𝑋)
2 omeunle.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 omeunle.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 40731 . . . . . 6 (𝜑𝑋 ∈ V)
5 ssexg 5077 . . . . . 6 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
61, 4, 5syl2anc 576 . . . . 5 (𝜑𝐴 ∈ V)
7 omeunle.b . . . . . 6 (𝜑𝐵𝑋)
8 ssexg 5077 . . . . . 6 ((𝐵𝑋𝑋 ∈ V) → 𝐵 ∈ V)
97, 4, 8syl2anc 576 . . . . 5 (𝜑𝐵 ∈ V)
10 uniprg 4720 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
116, 9, 10syl2anc 576 . . . 4 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
1211eqcomd 2778 . . 3 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
1312fveq2d 6497 . 2 (𝜑 → (𝑂‘(𝐴𝐵)) = (𝑂 {𝐴, 𝐵}))
14 iccssxr 12629 . . . 4 (0[,]+∞) ⊆ ℝ*
151, 7unssd 4044 . . . . . 6 (𝜑 → (𝐴𝐵) ⊆ 𝑋)
1611, 15eqsstrd 3889 . . . . 5 (𝜑 {𝐴, 𝐵} ⊆ 𝑋)
172, 3, 16omecl 42216 . . . 4 (𝜑 → (𝑂 {𝐴, 𝐵}) ∈ (0[,]+∞))
1814, 17sseldi 3850 . . 3 (𝜑 → (𝑂 {𝐴, 𝐵}) ∈ ℝ*)
19 prfi 8582 . . . . . 6 {𝐴, 𝐵} ∈ Fin
2019elexi 3428 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵} ∈ V)
222, 3omef 42209 . . . . 5 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
23 elpwg 4424 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
246, 23syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
251, 24mpbird 249 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 𝑋)
26 elpwg 4424 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
279, 26syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
287, 27mpbird 249 . . . . . . 7 (𝜑𝐵 ∈ 𝒫 𝑋)
2925, 28jca 504 . . . . . 6 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋))
30 prssg 4620 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋))
316, 9, 30syl2anc 576 . . . . . 6 (𝜑 → ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋))
3229, 31mpbid 224 . . . . 5 (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝑋)
3322, 32fssresd 6368 . . . 4 (𝜑 → (𝑂 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
3421, 33sge0xrcl 42098 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ∈ ℝ*)
352, 3, 1omecl 42216 . . . . 5 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
3614, 35sseldi 3850 . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ*)
372, 3, 7omecl 42216 . . . . 5 (𝜑 → (𝑂𝐵) ∈ (0[,]+∞))
3814, 37sseldi 3850 . . . 4 (𝜑 → (𝑂𝐵) ∈ ℝ*)
3936, 38xaddcld 12504 . . 3 (𝜑 → ((𝑂𝐴) +𝑒 (𝑂𝐵)) ∈ ℝ*)
40 isfinite 8903 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4140biimpi 208 . . . . . . 7 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
42 sdomdom 8328 . . . . . . 7 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
4341, 42syl 17 . . . . . 6 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
4419, 43ax-mp 5 . . . . 5 {𝐴, 𝐵} ≼ ω
4544a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵} ≼ ω)
462, 3, 32, 45omeunile 42218 . . 3 (𝜑 → (𝑂 {𝐴, 𝐵}) ≤ (Σ^‘(𝑂 ↾ {𝐴, 𝐵})))
4722, 32feqresmpt 6557 . . . . 5 (𝜑 → (𝑂 ↾ {𝐴, 𝐵}) = (𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘)))
4847fveq2d 6497 . . . 4 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘))))
49 fveq2 6493 . . . . 5 (𝑘 = 𝐴 → (𝑂𝑘) = (𝑂𝐴))
50 fveq2 6493 . . . . 5 (𝑘 = 𝐵 → (𝑂𝑘) = (𝑂𝐵))
516, 9, 35, 37, 49, 50sge0prle 42114 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘))) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5248, 51eqbrtrd 4945 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5318, 34, 39, 46, 52xrletrd 12366 . 2 (𝜑 → (𝑂 {𝐴, 𝐵}) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5413, 53eqbrtrd 4945 1 (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  Vcvv 3409  cun 3821  wss 3823  𝒫 cpw 4416  {cpr 4437   cuni 4706   class class class wbr 4923  cmpt 5002  dom cdm 5401  cres 5403  cfv 6182  (class class class)co 6970  ωcom 7390  cdom 8298  csdm 8299  Fincfn 8300  0cc0 10329  +∞cpnf 10465  *cxr 10467  cle 10469   +𝑒 cxad 12316  [,]cicc 12551  Σ^csumge0 42075  OutMeascome 42202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8892  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-se 5361  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-sup 8695  df-oi 8763  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-n0 11702  df-z 11788  df-uz 12053  df-rp 12199  df-xadd 12319  df-ico 12554  df-icc 12555  df-fz 12703  df-fzo 12844  df-seq 13179  df-exp 13239  df-hash 13500  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-clim 14700  df-sum 14898  df-sumge0 42076  df-ome 42203
This theorem is referenced by:  omelesplit  42231
  Copyright terms: Public domain W3C validator