![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omeunle | Structured version Visualization version GIF version |
Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omeunle.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omeunle.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omeunle.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
omeunle.b | ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
Ref | Expression |
---|---|
omeunle | ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omeunle.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
2 | omeunle.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | omeunle.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
4 | 2, 3 | unidmex 44952 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
5 | ssexg 5341 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
6 | 1, 4, 5 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
7 | omeunle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) | |
8 | ssexg 5341 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐵 ∈ V) | |
9 | 7, 4, 8 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
10 | uniprg 4947 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
11 | 6, 9, 10 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
12 | 11 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) = ∪ {𝐴, 𝐵}) |
13 | 12 | fveq2d 6924 | . 2 ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) = (𝑂‘∪ {𝐴, 𝐵})) |
14 | iccssxr 13490 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
15 | 1, 7 | unssd 4215 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
16 | 11, 15 | eqsstrd 4047 | . . . . 5 ⊢ (𝜑 → ∪ {𝐴, 𝐵} ⊆ 𝑋) |
17 | 2, 3, 16 | omecl 46424 | . . . 4 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ∈ (0[,]+∞)) |
18 | 14, 17 | sselid 4006 | . . 3 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ∈ ℝ*) |
19 | prfi 9391 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
20 | 19 | elexi 3511 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ V |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ∈ V) |
22 | 2, 3 | omef 46417 | . . . . 5 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
23 | elpwg 4625 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
24 | 6, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
25 | 1, 24 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
26 | elpwg 4625 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
27 | 9, 26 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) |
28 | 7, 27 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑋) |
29 | 25, 28 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋)) |
30 | prssg 4844 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋)) | |
31 | 6, 9, 30 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋)) |
32 | 29, 31 | mpbid 232 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝑋) |
33 | 22, 32 | fssresd 6788 | . . . 4 ⊢ (𝜑 → (𝑂 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞)) |
34 | 21, 33 | sge0xrcl 46306 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ∈ ℝ*) |
35 | 2, 3, 1 | omecl 46424 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
36 | 14, 35 | sselid 4006 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
37 | 2, 3, 7 | omecl 46424 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
38 | 14, 37 | sselid 4006 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
39 | 36, 38 | xaddcld 13363 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵)) ∈ ℝ*) |
40 | isfinite 9721 | . . . . . . . 8 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) | |
41 | 40 | biimpi 216 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω) |
42 | sdomdom 9040 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω) | |
43 | 41, 42 | syl 17 | . . . . . 6 ⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω) |
44 | 19, 43 | ax-mp 5 | . . . . 5 ⊢ {𝐴, 𝐵} ≼ ω |
45 | 44 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ≼ ω) |
46 | 2, 3, 32, 45 | omeunile 46426 | . . 3 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ≤ (Σ^‘(𝑂 ↾ {𝐴, 𝐵}))) |
47 | 22, 32 | feqresmpt 6991 | . . . . 5 ⊢ (𝜑 → (𝑂 ↾ {𝐴, 𝐵}) = (𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘))) |
48 | 47 | fveq2d 6924 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘)))) |
49 | fveq2 6920 | . . . . 5 ⊢ (𝑘 = 𝐴 → (𝑂‘𝑘) = (𝑂‘𝐴)) | |
50 | fveq2 6920 | . . . . 5 ⊢ (𝑘 = 𝐵 → (𝑂‘𝑘) = (𝑂‘𝐵)) | |
51 | 6, 9, 35, 37, 49, 50 | sge0prle 46322 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘))) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
52 | 48, 51 | eqbrtrd 5188 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
53 | 18, 34, 39, 46, 52 | xrletrd 13224 | . 2 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
54 | 13, 53 | eqbrtrd 5188 | 1 ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 {cpr 4650 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 ≺ csdm 9002 Fincfn 9003 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 ≤ cle 11325 +𝑒 cxad 13173 [,]cicc 13410 Σ^csumge0 46283 OutMeascome 46410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-sumge0 46284 df-ome 46411 |
This theorem is referenced by: omelesplit 46439 |
Copyright terms: Public domain | W3C validator |