| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omeunle | Structured version Visualization version GIF version | ||
| Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omeunle.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omeunle.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omeunle.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omeunle.b | ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omeunle | ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omeunle.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 2 | omeunle.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 3 | omeunle.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 4 | 2, 3 | unidmex 45051 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
| 5 | ssexg 5281 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 7 | omeunle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) | |
| 8 | ssexg 5281 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐵 ∈ V) | |
| 9 | 7, 4, 8 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | uniprg 4890 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 11 | 6, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 12 | 11 | eqcomd 2736 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) = ∪ {𝐴, 𝐵}) |
| 13 | 12 | fveq2d 6865 | . 2 ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) = (𝑂‘∪ {𝐴, 𝐵})) |
| 14 | iccssxr 13398 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 15 | 1, 7 | unssd 4158 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 16 | 11, 15 | eqsstrd 3984 | . . . . 5 ⊢ (𝜑 → ∪ {𝐴, 𝐵} ⊆ 𝑋) |
| 17 | 2, 3, 16 | omecl 46508 | . . . 4 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ∈ (0[,]+∞)) |
| 18 | 14, 17 | sselid 3947 | . . 3 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ∈ ℝ*) |
| 19 | prfi 9281 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 20 | 19 | elexi 3473 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ V |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ∈ V) |
| 22 | 2, 3 | omef 46501 | . . . . 5 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| 23 | elpwg 4569 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 24 | 6, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 25 | 1, 24 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 26 | elpwg 4569 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
| 27 | 9, 26 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) |
| 28 | 7, 27 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑋) |
| 29 | 25, 28 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋)) |
| 30 | prssg 4786 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋)) | |
| 31 | 6, 9, 30 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋)) |
| 32 | 29, 31 | mpbid 232 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝑋) |
| 33 | 22, 32 | fssresd 6730 | . . . 4 ⊢ (𝜑 → (𝑂 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞)) |
| 34 | 21, 33 | sge0xrcl 46390 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ∈ ℝ*) |
| 35 | 2, 3, 1 | omecl 46508 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| 36 | 14, 35 | sselid 3947 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
| 37 | 2, 3, 7 | omecl 46508 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
| 38 | 14, 37 | sselid 3947 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 39 | 36, 38 | xaddcld 13268 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵)) ∈ ℝ*) |
| 40 | isfinite 9612 | . . . . . . . 8 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) | |
| 41 | 40 | biimpi 216 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω) |
| 42 | sdomdom 8954 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω) | |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω) |
| 44 | 19, 43 | ax-mp 5 | . . . . 5 ⊢ {𝐴, 𝐵} ≼ ω |
| 45 | 44 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ≼ ω) |
| 46 | 2, 3, 32, 45 | omeunile 46510 | . . 3 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ≤ (Σ^‘(𝑂 ↾ {𝐴, 𝐵}))) |
| 47 | 22, 32 | feqresmpt 6933 | . . . . 5 ⊢ (𝜑 → (𝑂 ↾ {𝐴, 𝐵}) = (𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘))) |
| 48 | 47 | fveq2d 6865 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘)))) |
| 49 | fveq2 6861 | . . . . 5 ⊢ (𝑘 = 𝐴 → (𝑂‘𝑘) = (𝑂‘𝐴)) | |
| 50 | fveq2 6861 | . . . . 5 ⊢ (𝑘 = 𝐵 → (𝑂‘𝑘) = (𝑂‘𝐵)) | |
| 51 | 6, 9, 35, 37, 49, 50 | sge0prle 46406 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘))) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 52 | 48, 51 | eqbrtrd 5132 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 53 | 18, 34, 39, 46, 52 | xrletrd 13129 | . 2 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 54 | 13, 53 | eqbrtrd 5132 | 1 ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 𝒫 cpw 4566 {cpr 4594 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ≼ cdom 8919 ≺ csdm 8920 Fincfn 8921 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 +𝑒 cxad 13077 [,]cicc 13316 Σ^csumge0 46367 OutMeascome 46494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-xadd 13080 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-sumge0 46368 df-ome 46495 |
| This theorem is referenced by: omelesplit 46523 |
| Copyright terms: Public domain | W3C validator |