Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeunle Structured version   Visualization version   GIF version

Theorem omeunle 44054
Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeunle.o (𝜑𝑂 ∈ OutMeas)
omeunle.x 𝑋 = dom 𝑂
omeunle.a (𝜑𝐴𝑋)
omeunle.b (𝜑𝐵𝑋)
Assertion
Ref Expression
omeunle (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))

Proof of Theorem omeunle
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 omeunle.a . . . . . 6 (𝜑𝐴𝑋)
2 omeunle.o . . . . . . 7 (𝜑𝑂 ∈ OutMeas)
3 omeunle.x . . . . . . 7 𝑋 = dom 𝑂
42, 3unidmex 42598 . . . . . 6 (𝜑𝑋 ∈ V)
5 ssexg 5247 . . . . . 6 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
61, 4, 5syl2anc 584 . . . . 5 (𝜑𝐴 ∈ V)
7 omeunle.b . . . . . 6 (𝜑𝐵𝑋)
8 ssexg 5247 . . . . . 6 ((𝐵𝑋𝑋 ∈ V) → 𝐵 ∈ V)
97, 4, 8syl2anc 584 . . . . 5 (𝜑𝐵 ∈ V)
10 uniprg 4856 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
116, 9, 10syl2anc 584 . . . 4 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
1211eqcomd 2744 . . 3 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
1312fveq2d 6778 . 2 (𝜑 → (𝑂‘(𝐴𝐵)) = (𝑂 {𝐴, 𝐵}))
14 iccssxr 13162 . . . 4 (0[,]+∞) ⊆ ℝ*
151, 7unssd 4120 . . . . . 6 (𝜑 → (𝐴𝐵) ⊆ 𝑋)
1611, 15eqsstrd 3959 . . . . 5 (𝜑 {𝐴, 𝐵} ⊆ 𝑋)
172, 3, 16omecl 44041 . . . 4 (𝜑 → (𝑂 {𝐴, 𝐵}) ∈ (0[,]+∞))
1814, 17sselid 3919 . . 3 (𝜑 → (𝑂 {𝐴, 𝐵}) ∈ ℝ*)
19 prfi 9089 . . . . . 6 {𝐴, 𝐵} ∈ Fin
2019elexi 3451 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵} ∈ V)
222, 3omef 44034 . . . . 5 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
23 elpwg 4536 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
246, 23syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
251, 24mpbird 256 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 𝑋)
26 elpwg 4536 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
279, 26syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
287, 27mpbird 256 . . . . . . 7 (𝜑𝐵 ∈ 𝒫 𝑋)
2925, 28jca 512 . . . . . 6 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋))
30 prssg 4752 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋))
316, 9, 30syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋))
3229, 31mpbid 231 . . . . 5 (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝑋)
3322, 32fssresd 6641 . . . 4 (𝜑 → (𝑂 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
3421, 33sge0xrcl 43923 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ∈ ℝ*)
352, 3, 1omecl 44041 . . . . 5 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
3614, 35sselid 3919 . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ*)
372, 3, 7omecl 44041 . . . . 5 (𝜑 → (𝑂𝐵) ∈ (0[,]+∞))
3814, 37sselid 3919 . . . 4 (𝜑 → (𝑂𝐵) ∈ ℝ*)
3936, 38xaddcld 13035 . . 3 (𝜑 → ((𝑂𝐴) +𝑒 (𝑂𝐵)) ∈ ℝ*)
40 isfinite 9410 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4140biimpi 215 . . . . . . 7 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
42 sdomdom 8768 . . . . . . 7 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
4341, 42syl 17 . . . . . 6 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
4419, 43ax-mp 5 . . . . 5 {𝐴, 𝐵} ≼ ω
4544a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵} ≼ ω)
462, 3, 32, 45omeunile 44043 . . 3 (𝜑 → (𝑂 {𝐴, 𝐵}) ≤ (Σ^‘(𝑂 ↾ {𝐴, 𝐵})))
4722, 32feqresmpt 6838 . . . . 5 (𝜑 → (𝑂 ↾ {𝐴, 𝐵}) = (𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘)))
4847fveq2d 6778 . . . 4 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘))))
49 fveq2 6774 . . . . 5 (𝑘 = 𝐴 → (𝑂𝑘) = (𝑂𝐴))
50 fveq2 6774 . . . . 5 (𝑘 = 𝐵 → (𝑂𝑘) = (𝑂𝐵))
516, 9, 35, 37, 49, 50sge0prle 43939 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂𝑘))) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5248, 51eqbrtrd 5096 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5318, 34, 39, 46, 52xrletrd 12896 . 2 (𝜑 → (𝑂 {𝐴, 𝐵}) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
5413, 53eqbrtrd 5096 1 (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  wss 3887  𝒫 cpw 4533  {cpr 4563   cuni 4839   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  cfv 6433  (class class class)co 7275  ωcom 7712  cdom 8731  csdm 8732  Fincfn 8733  0cc0 10871  +∞cpnf 11006  *cxr 11008  cle 11010   +𝑒 cxad 12846  [,]cicc 13082  Σ^csumge0 43900  OutMeascome 44027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901  df-ome 44028
This theorem is referenced by:  omelesplit  44056
  Copyright terms: Public domain W3C validator