| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omeunle | Structured version Visualization version GIF version | ||
| Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omeunle.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omeunle.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omeunle.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omeunle.b | ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omeunle | ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omeunle.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 2 | omeunle.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 3 | omeunle.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 4 | 2, 3 | unidmex 45074 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
| 5 | ssexg 5293 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 7 | omeunle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) | |
| 8 | ssexg 5293 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐵 ∈ V) | |
| 9 | 7, 4, 8 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | uniprg 4899 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 11 | 6, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 12 | 11 | eqcomd 2741 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) = ∪ {𝐴, 𝐵}) |
| 13 | 12 | fveq2d 6880 | . 2 ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) = (𝑂‘∪ {𝐴, 𝐵})) |
| 14 | iccssxr 13447 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 15 | 1, 7 | unssd 4167 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 16 | 11, 15 | eqsstrd 3993 | . . . . 5 ⊢ (𝜑 → ∪ {𝐴, 𝐵} ⊆ 𝑋) |
| 17 | 2, 3, 16 | omecl 46532 | . . . 4 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ∈ (0[,]+∞)) |
| 18 | 14, 17 | sselid 3956 | . . 3 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ∈ ℝ*) |
| 19 | prfi 9335 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 20 | 19 | elexi 3482 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ V |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ∈ V) |
| 22 | 2, 3 | omef 46525 | . . . . 5 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| 23 | elpwg 4578 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 24 | 6, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 25 | 1, 24 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 26 | elpwg 4578 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
| 27 | 9, 26 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) |
| 28 | 7, 27 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑋) |
| 29 | 25, 28 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋)) |
| 30 | prssg 4795 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋)) | |
| 31 | 6, 9, 30 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋)) |
| 32 | 29, 31 | mpbid 232 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝑋) |
| 33 | 22, 32 | fssresd 6745 | . . . 4 ⊢ (𝜑 → (𝑂 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞)) |
| 34 | 21, 33 | sge0xrcl 46414 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ∈ ℝ*) |
| 35 | 2, 3, 1 | omecl 46532 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| 36 | 14, 35 | sselid 3956 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
| 37 | 2, 3, 7 | omecl 46532 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
| 38 | 14, 37 | sselid 3956 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 39 | 36, 38 | xaddcld 13317 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵)) ∈ ℝ*) |
| 40 | isfinite 9666 | . . . . . . . 8 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) | |
| 41 | 40 | biimpi 216 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω) |
| 42 | sdomdom 8994 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω) | |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω) |
| 44 | 19, 43 | ax-mp 5 | . . . . 5 ⊢ {𝐴, 𝐵} ≼ ω |
| 45 | 44 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ≼ ω) |
| 46 | 2, 3, 32, 45 | omeunile 46534 | . . 3 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ≤ (Σ^‘(𝑂 ↾ {𝐴, 𝐵}))) |
| 47 | 22, 32 | feqresmpt 6948 | . . . . 5 ⊢ (𝜑 → (𝑂 ↾ {𝐴, 𝐵}) = (𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘))) |
| 48 | 47 | fveq2d 6880 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘)))) |
| 49 | fveq2 6876 | . . . . 5 ⊢ (𝑘 = 𝐴 → (𝑂‘𝑘) = (𝑂‘𝐴)) | |
| 50 | fveq2 6876 | . . . . 5 ⊢ (𝑘 = 𝐵 → (𝑂‘𝑘) = (𝑂‘𝐵)) | |
| 51 | 6, 9, 35, 37, 49, 50 | sge0prle 46430 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘))) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 52 | 48, 51 | eqbrtrd 5141 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 53 | 18, 34, 39, 46, 52 | xrletrd 13178 | . 2 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 54 | 13, 53 | eqbrtrd 5141 | 1 ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 𝒫 cpw 4575 {cpr 4603 ∪ cuni 4883 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ≼ cdom 8957 ≺ csdm 8958 Fincfn 8959 0cc0 11129 +∞cpnf 11266 ℝ*cxr 11268 ≤ cle 11270 +𝑒 cxad 13126 [,]cicc 13365 Σ^csumge0 46391 OutMeascome 46518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-xadd 13129 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-sumge0 46392 df-ome 46519 |
| This theorem is referenced by: omelesplit 46547 |
| Copyright terms: Public domain | W3C validator |