| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omeunle | Structured version Visualization version GIF version | ||
| Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omeunle.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omeunle.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omeunle.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| omeunle.b | ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omeunle | ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omeunle.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 2 | omeunle.o | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 3 | omeunle.x | . . . . . . 7 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 4 | 2, 3 | unidmex 45028 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
| 5 | ssexg 5262 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 7 | omeunle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) | |
| 8 | ssexg 5262 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐵 ∈ V) | |
| 9 | 7, 4, 8 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | uniprg 4874 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 11 | 6, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 12 | 11 | eqcomd 2735 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) = ∪ {𝐴, 𝐵}) |
| 13 | 12 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) = (𝑂‘∪ {𝐴, 𝐵})) |
| 14 | iccssxr 13333 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 15 | 1, 7 | unssd 4143 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 16 | 11, 15 | eqsstrd 3970 | . . . . 5 ⊢ (𝜑 → ∪ {𝐴, 𝐵} ⊆ 𝑋) |
| 17 | 2, 3, 16 | omecl 46484 | . . . 4 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ∈ (0[,]+∞)) |
| 18 | 14, 17 | sselid 3933 | . . 3 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ∈ ℝ*) |
| 19 | prfi 9213 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 20 | 19 | elexi 3459 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ V |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ∈ V) |
| 22 | 2, 3 | omef 46477 | . . . . 5 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| 23 | elpwg 4554 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 24 | 6, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 25 | 1, 24 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 26 | elpwg 4554 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
| 27 | 9, 26 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) |
| 28 | 7, 27 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑋) |
| 29 | 25, 28 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋)) |
| 30 | prssg 4770 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋)) | |
| 31 | 6, 9, 30 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝑋)) |
| 32 | 29, 31 | mpbid 232 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝒫 𝑋) |
| 33 | 22, 32 | fssresd 6691 | . . . 4 ⊢ (𝜑 → (𝑂 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞)) |
| 34 | 21, 33 | sge0xrcl 46366 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ∈ ℝ*) |
| 35 | 2, 3, 1 | omecl 46484 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| 36 | 14, 35 | sselid 3933 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
| 37 | 2, 3, 7 | omecl 46484 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝐵) ∈ (0[,]+∞)) |
| 38 | 14, 37 | sselid 3933 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
| 39 | 36, 38 | xaddcld 13203 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵)) ∈ ℝ*) |
| 40 | isfinite 9548 | . . . . . . . 8 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) | |
| 41 | 40 | biimpi 216 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω) |
| 42 | sdomdom 8905 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω) | |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω) |
| 44 | 19, 43 | ax-mp 5 | . . . . 5 ⊢ {𝐴, 𝐵} ≼ ω |
| 45 | 44 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ≼ ω) |
| 46 | 2, 3, 32, 45 | omeunile 46486 | . . 3 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ≤ (Σ^‘(𝑂 ↾ {𝐴, 𝐵}))) |
| 47 | 22, 32 | feqresmpt 6892 | . . . . 5 ⊢ (𝜑 → (𝑂 ↾ {𝐴, 𝐵}) = (𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘))) |
| 48 | 47 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘)))) |
| 49 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝐴 → (𝑂‘𝑘) = (𝑂‘𝐴)) | |
| 50 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝐵 → (𝑂‘𝑘) = (𝑂‘𝐵)) | |
| 51 | 6, 9, 35, 37, 49, 50 | sge0prle 46382 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ (𝑂‘𝑘))) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 52 | 48, 51 | eqbrtrd 5114 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑂 ↾ {𝐴, 𝐵})) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 53 | 18, 34, 39, 46, 52 | xrletrd 13064 | . 2 ⊢ (𝜑 → (𝑂‘∪ {𝐴, 𝐵}) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| 54 | 13, 53 | eqbrtrd 5114 | 1 ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ⊆ wss 3903 𝒫 cpw 4551 {cpr 4579 ∪ cuni 4858 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 ωcom 7799 ≼ cdom 8870 ≺ csdm 8871 Fincfn 8872 0cc0 11009 +∞cpnf 11146 ℝ*cxr 11148 ≤ cle 11150 +𝑒 cxad 13012 [,]cicc 13251 Σ^csumge0 46343 OutMeascome 46470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-xadd 13015 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-sumge0 46344 df-ome 46471 |
| This theorem is referenced by: omelesplit 46499 |
| Copyright terms: Public domain | W3C validator |