Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unidmqs Structured version   Visualization version   GIF version

Theorem unidmqs 38825
Description: The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.)
Assertion
Ref Expression
unidmqs (𝑅𝑉 → (Rel 𝑅 (dom 𝑅 / 𝑅) = ran 𝑅))

Proof of Theorem unidmqs
StepHypRef Expression
1 resexg 5983 . . . 4 (𝑅𝑉 → (𝑅 ↾ dom 𝑅) ∈ V)
2 rnresequniqs 38439 . . . 4 ((𝑅 ↾ dom 𝑅) ∈ V → ran (𝑅 ↾ dom 𝑅) = (dom 𝑅 / 𝑅))
31, 2syl 17 . . 3 (𝑅𝑉 → ran (𝑅 ↾ dom 𝑅) = (dom 𝑅 / 𝑅))
4 resdm 5982 . . . 4 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
54rneqd 5884 . . 3 (Rel 𝑅 → ran (𝑅 ↾ dom 𝑅) = ran 𝑅)
63, 5sylan9req 2789 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (dom 𝑅 / 𝑅) = ran 𝑅)
76ex 412 1 (𝑅𝑉 → (Rel 𝑅 (dom 𝑅 / 𝑅) = ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437   cuni 4860  dom cdm 5621  ran crn 5622  cres 5623  Rel wrel 5626   / cqs 8630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-qs 8637
This theorem is referenced by:  unidmqseq  38826
  Copyright terms: Public domain W3C validator