Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmqs | Structured version Visualization version GIF version |
Description: The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
unidmqs | ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 5926 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾ dom 𝑅) ∈ V) | |
2 | rnresequniqs 36394 | . . . 4 ⊢ ((𝑅 ↾ dom 𝑅) ∈ V → ran (𝑅 ↾ dom 𝑅) = ∪ (dom 𝑅 / 𝑅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ↾ dom 𝑅) = ∪ (dom 𝑅 / 𝑅)) |
4 | resdm 5925 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
5 | 4 | rneqd 5836 | . . 3 ⊢ (Rel 𝑅 → ran (𝑅 ↾ dom 𝑅) = ran 𝑅) |
6 | 3, 5 | sylan9req 2800 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∪ (dom 𝑅 / 𝑅) = ran 𝑅) |
7 | 6 | ex 412 | 1 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cuni 4836 dom cdm 5580 ran crn 5581 ↾ cres 5582 Rel wrel 5585 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 |
This theorem is referenced by: unidmqseq 36694 |
Copyright terms: Public domain | W3C validator |