Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmqs | Structured version Visualization version GIF version |
Description: The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
unidmqs | ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 5937 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾ dom 𝑅) ∈ V) | |
2 | rnresequniqs 36467 | . . . 4 ⊢ ((𝑅 ↾ dom 𝑅) ∈ V → ran (𝑅 ↾ dom 𝑅) = ∪ (dom 𝑅 / 𝑅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ↾ dom 𝑅) = ∪ (dom 𝑅 / 𝑅)) |
4 | resdm 5936 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
5 | 4 | rneqd 5847 | . . 3 ⊢ (Rel 𝑅 → ran (𝑅 ↾ dom 𝑅) = ran 𝑅) |
6 | 3, 5 | sylan9req 2799 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∪ (dom 𝑅 / 𝑅) = ran 𝑅) |
7 | 6 | ex 413 | 1 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 dom cdm 5589 ran crn 5590 ↾ cres 5591 Rel wrel 5594 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 |
This theorem is referenced by: unidmqseq 36767 |
Copyright terms: Public domain | W3C validator |