| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmqs | Structured version Visualization version GIF version | ||
| Description: The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| unidmqs | ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg 5998 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾ dom 𝑅) ∈ V) | |
| 2 | rnresequniqs 38316 | . . . 4 ⊢ ((𝑅 ↾ dom 𝑅) ∈ V → ran (𝑅 ↾ dom 𝑅) = ∪ (dom 𝑅 / 𝑅)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ↾ dom 𝑅) = ∪ (dom 𝑅 / 𝑅)) |
| 4 | resdm 5997 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
| 5 | 4 | rneqd 5902 | . . 3 ⊢ (Rel 𝑅 → ran (𝑅 ↾ dom 𝑅) = ran 𝑅) |
| 6 | 3, 5 | sylan9req 2785 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∪ (dom 𝑅 / 𝑅) = ran 𝑅) |
| 7 | 6 | ex 412 | 1 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 dom cdm 5638 ran crn 5639 ↾ cres 5640 Rel wrel 5643 / cqs 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 |
| This theorem is referenced by: unidmqseq 38647 |
| Copyright terms: Public domain | W3C validator |