MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincmp Structured version   Visualization version   GIF version

Theorem locfincmp 22050
Description: For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
locfincmp.1 𝑋 = 𝐽
locfincmp.2 𝑌 = 𝐶
Assertion
Ref Expression
locfincmp (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))

Proof of Theorem locfincmp
Dummy variables 𝑜 𝑐 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfincmp.1 . . . . . . . . . 10 𝑋 = 𝐽
21locfinnei 22047 . . . . . . . . 9 ((𝐶 ∈ (LocFin‘𝐽) ∧ 𝑥𝑋) → ∃𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
32ralrimiva 3187 . . . . . . . 8 (𝐶 ∈ (LocFin‘𝐽) → ∀𝑥𝑋𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
41cmpcov2 21914 . . . . . . . 8 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
53, 4sylan2 592 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
6 elfpw 8815 . . . . . . . . 9 (𝑐 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑐𝐽𝑐 ∈ Fin))
7 simplrr 774 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → 𝑐 ∈ Fin)
8 eldifsn 4718 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐶 ∖ {∅}) ↔ (𝑥𝐶𝑥 ≠ ∅))
9 ineq1 4185 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑥 → (𝑠𝑜) = (𝑥𝑜))
109neeq1d 3080 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑥 → ((𝑠𝑜) ≠ ∅ ↔ (𝑥𝑜) ≠ ∅))
11 simplrl 773 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑥𝐶)
12 simplrr 774 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑦𝑥)
13 simprr 769 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑦𝑜)
14 inelcm 4417 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥𝑦𝑜) → (𝑥𝑜) ≠ ∅)
1512, 13, 14syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → (𝑥𝑜) ≠ ∅)
1610, 11, 15elrabd 3686 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
17 elunii 4842 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑥𝑥𝐶) → 𝑦 𝐶)
18 locfincmp.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑌 = 𝐶
1917, 18syl6eleqr 2929 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑥𝑥𝐶) → 𝑦𝑌)
2019ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐶𝑦𝑥) → 𝑦𝑌)
2120adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦𝑌)
221, 18locfinbas 22046 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)
2322adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝑋 = 𝑌)
2423ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑋 = 𝑌)
2521, 24eleqtrrd 2921 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦𝑋)
26 simplr 765 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑋 = 𝑐)
2725, 26eleqtrd 2920 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦 𝑐)
28 eluni2 4841 . . . . . . . . . . . . . . . . . . 19 (𝑦 𝑐 ↔ ∃𝑜𝑐 𝑦𝑜)
2927, 28sylib 219 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → ∃𝑜𝑐 𝑦𝑜)
3016, 29reximddv 3280 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
3130expr 457 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (𝑦𝑥 → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3231exlimdv 1927 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (∃𝑦 𝑦𝑥 → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
33 n0 4314 . . . . . . . . . . . . . . 15 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
34 eliun 4921 . . . . . . . . . . . . . . 15 (𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ↔ ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
3532, 33, 343imtr4g 297 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (𝑥 ≠ ∅ → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3635expimpd 454 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → ((𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
378, 36syl5bi 243 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (𝑥 ∈ (𝐶 ∖ {∅}) → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3837ssrdv 3977 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
39 iunfi 8801 . . . . . . . . . . . . 13 ((𝑐 ∈ Fin ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin)
4039ex 413 . . . . . . . . . . . 12 (𝑐 ∈ Fin → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
41 ssfi 8727 . . . . . . . . . . . . 13 (( 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}) → (𝐶 ∖ {∅}) ∈ Fin)
4241expcom 414 . . . . . . . . . . . 12 ((𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} → ( 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
4340, 42sylan9 508 . . . . . . . . . . 11 ((𝑐 ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}) → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
447, 38, 43syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
4544expimpd 454 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) → ((𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
466, 45sylan2b 593 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ 𝑐 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
4746rexlimdva 3289 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
485, 47mpd 15 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∖ {∅}) ∈ Fin)
49 snfi 8583 . . . . . 6 {∅} ∈ Fin
50 unfi 8774 . . . . . 6 (((𝐶 ∖ {∅}) ∈ Fin ∧ {∅} ∈ Fin) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin)
5148, 49, 50sylancl 586 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin)
52 ssun1 4152 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {∅})
53 undif1 4427 . . . . . 6 ((𝐶 ∖ {∅}) ∪ {∅}) = (𝐶 ∪ {∅})
5452, 53sseqtrri 4008 . . . . 5 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})
55 ssfi 8727 . . . . 5 ((((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin ∧ 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})) → 𝐶 ∈ Fin)
5651, 54, 55sylancl 586 . . . 4 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝐶 ∈ Fin)
5756, 23jca 512 . . 3 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))
5857ex 413 . 2 (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))
59 cmptop 21919 . . 3 (𝐽 ∈ Comp → 𝐽 ∈ Top)
601, 18finlocfin 22044 . . . 4 ((𝐽 ∈ Top ∧ 𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽))
61603expib 1116 . . 3 (𝐽 ∈ Top → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)))
6259, 61syl 17 . 2 (𝐽 ∈ Comp → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)))
6358, 62impbid 213 1 (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  wne 3021  wral 3143  wrex 3144  {crab 3147  cdif 3937  cun 3938  cin 3939  wss 3940  c0 4295  𝒫 cpw 4542  {csn 4564   cuni 4837   ciun 4917  cfv 6352  Fincfn 8498  Topctop 21417  Compccmp 21910  LocFinclocfin 22028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-fin 8502  df-top 21418  df-cmp 21911  df-locfin 22031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator