Step | Hyp | Ref
| Expression |
1 | | locfincmp.1 |
. . . . . . . . . 10
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | locfinnei 22420 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (LocFin‘𝐽) ∧ 𝑥 ∈ 𝑋) → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin)) |
3 | 2 | ralrimiva 3105 |
. . . . . . . 8
⊢ (𝐶 ∈ (LocFin‘𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin)) |
4 | 1 | cmpcov2 22287 |
. . . . . . . 8
⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin)) →
∃𝑐 ∈ (𝒫
𝐽 ∩ Fin)(𝑋 = ∪
𝑐 ∧ ∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin)) |
5 | 3, 4 | sylan2 596 |
. . . . . . 7
⊢ ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑐 ∧ ∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin)) |
6 | | elfpw 8978 |
. . . . . . . . 9
⊢ (𝑐 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) |
7 | | simplrr 778 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) → 𝑐 ∈ Fin) |
8 | | eldifsn 4700 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐶 ∖ {∅}) ↔ (𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ∅)) |
9 | | ineq1 4120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑥 → (𝑠 ∩ 𝑜) = (𝑥 ∩ 𝑜)) |
10 | 9 | neeq1d 3000 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 𝑥 → ((𝑠 ∩ 𝑜) ≠ ∅ ↔ (𝑥 ∩ 𝑜) ≠ ∅)) |
11 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜)) → 𝑥 ∈ 𝐶) |
12 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜)) → 𝑦 ∈ 𝑥) |
13 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜)) → 𝑦 ∈ 𝑜) |
14 | | inelcm 4379 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑦 ∈ 𝑜) → (𝑥 ∩ 𝑜) ≠ ∅) |
15 | 12, 13, 14 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜)) → (𝑥 ∩ 𝑜) ≠ ∅) |
16 | 10, 11, 15 | elrabd 3604 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜)) → 𝑥 ∈ {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅}) |
17 | | elunii 4824 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) → 𝑦 ∈ ∪ 𝐶) |
18 | | locfincmp.2 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑌 = ∪
𝐶 |
19 | 17, 18 | eleqtrrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) → 𝑦 ∈ 𝑌) |
20 | 19 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑌) |
21 | 20 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ 𝑌) |
22 | 1, 18 | locfinbas 22419 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐶 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
23 | 22 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝑋 = 𝑌) |
24 | 23 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) → 𝑋 = 𝑌) |
25 | 21, 24 | eleqtrrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ 𝑋) |
26 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) → 𝑋 = ∪ 𝑐) |
27 | 25, 26 | eleqtrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ ∪ 𝑐) |
28 | | eluni2 4823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ∪ 𝑐
↔ ∃𝑜 ∈
𝑐 𝑦 ∈ 𝑜) |
29 | 27, 28 | sylib 221 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) → ∃𝑜 ∈ 𝑐 𝑦 ∈ 𝑜) |
30 | 16, 29 | reximddv 3194 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥)) → ∃𝑜 ∈ 𝑐 𝑥 ∈ {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅}) |
31 | 30 | expr 460 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ 𝑥 ∈ 𝐶) → (𝑦 ∈ 𝑥 → ∃𝑜 ∈ 𝑐 𝑥 ∈ {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅})) |
32 | 31 | exlimdv 1941 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ 𝑥 ∈ 𝐶) → (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑜 ∈ 𝑐 𝑥 ∈ {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅})) |
33 | | n0 4261 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) |
34 | | eliun 4908 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ↔ ∃𝑜 ∈ 𝑐 𝑥 ∈ {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅}) |
35 | 32, 33, 34 | 3imtr4g 299 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈ Comp
∧ 𝐶 ∈
(LocFin‘𝐽)) ∧
(𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) ∧ 𝑥 ∈ 𝐶) → (𝑥 ≠ ∅ → 𝑥 ∈ ∪
𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅})) |
36 | 35 | expimpd 457 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ∈ ∪
𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅})) |
37 | 8, 36 | syl5bi 245 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) → (𝑥 ∈ (𝐶 ∖ {∅}) → 𝑥 ∈ ∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅})) |
38 | 37 | ssrdv 3907 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) → (𝐶 ∖ {∅}) ⊆ ∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅}) |
39 | | iunfi 8964 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ Fin ∧ ∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin) → ∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin) |
40 | 39 | ex 416 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ Fin →
(∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin → ∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin)) |
41 | | ssfi 8851 |
. . . . . . . . . . . . 13
⊢
((∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆
∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅}) → (𝐶 ∖ {∅}) ∈
Fin) |
42 | 41 | expcom 417 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∖ {∅}) ⊆
∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} → (∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈
Fin)) |
43 | 40, 42 | sylan9 511 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆
∪ 𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅}) → (∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈
Fin)) |
44 | 7, 38, 43 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) ∧ 𝑋 = ∪ 𝑐) → (∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈
Fin)) |
45 | 44 | expimpd 457 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin)) → ((𝑋 = ∪ 𝑐 ∧ ∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈
Fin)) |
46 | 6, 45 | sylan2b 597 |
. . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ 𝑐 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = ∪ 𝑐 ∧ ∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈
Fin)) |
47 | 46 | rexlimdva 3203 |
. . . . . . 7
⊢ ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑐 ∧ ∀𝑜 ∈ 𝑐 {𝑠 ∈ 𝐶 ∣ (𝑠 ∩ 𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈
Fin)) |
48 | 5, 47 | mpd 15 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∖ {∅}) ∈
Fin) |
49 | | snfi 8721 |
. . . . . 6
⊢ {∅}
∈ Fin |
50 | | unfi 8850 |
. . . . . 6
⊢ (((𝐶 ∖ {∅}) ∈ Fin
∧ {∅} ∈ Fin) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈
Fin) |
51 | 48, 49, 50 | sylancl 589 |
. . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈
Fin) |
52 | | ssun1 4086 |
. . . . . 6
⊢ 𝐶 ⊆ (𝐶 ∪ {∅}) |
53 | | undif1 4390 |
. . . . . 6
⊢ ((𝐶 ∖ {∅}) ∪
{∅}) = (𝐶 ∪
{∅}) |
54 | 52, 53 | sseqtrri 3938 |
. . . . 5
⊢ 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪
{∅}) |
55 | | ssfi 8851 |
. . . . 5
⊢ ((((𝐶 ∖ {∅}) ∪
{∅}) ∈ Fin ∧ 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})) →
𝐶 ∈
Fin) |
56 | 51, 54, 55 | sylancl 589 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝐶 ∈ Fin) |
57 | 56, 23 | jca 515 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)) |
58 | 57 | ex 416 |
. 2
⊢ (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))) |
59 | | cmptop 22292 |
. . 3
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
60 | 1, 18 | finlocfin 22417 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)) |
61 | 60 | 3expib 1124 |
. . 3
⊢ (𝐽 ∈ Top → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽))) |
62 | 59, 61 | syl 17 |
. 2
⊢ (𝐽 ∈ Comp → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽))) |
63 | 58, 62 | impbid 215 |
1
⊢ (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))) |