MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincmp Structured version   Visualization version   GIF version

Theorem locfincmp 23462
Description: For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
locfincmp.1 𝑋 = 𝐽
locfincmp.2 𝑌 = 𝐶
Assertion
Ref Expression
locfincmp (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))

Proof of Theorem locfincmp
Dummy variables 𝑜 𝑐 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfincmp.1 . . . . . . . . . 10 𝑋 = 𝐽
21locfinnei 23459 . . . . . . . . 9 ((𝐶 ∈ (LocFin‘𝐽) ∧ 𝑥𝑋) → ∃𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
32ralrimiva 3132 . . . . . . . 8 (𝐶 ∈ (LocFin‘𝐽) → ∀𝑥𝑋𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
41cmpcov2 23326 . . . . . . . 8 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
53, 4sylan2 593 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
6 elfpw 9364 . . . . . . . . 9 (𝑐 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑐𝐽𝑐 ∈ Fin))
7 simplrr 777 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → 𝑐 ∈ Fin)
8 eldifsn 4762 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐶 ∖ {∅}) ↔ (𝑥𝐶𝑥 ≠ ∅))
9 ineq1 4188 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑥 → (𝑠𝑜) = (𝑥𝑜))
109neeq1d 2991 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑥 → ((𝑠𝑜) ≠ ∅ ↔ (𝑥𝑜) ≠ ∅))
11 simplrl 776 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑥𝐶)
12 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑦𝑥)
13 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑦𝑜)
14 inelcm 4440 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥𝑦𝑜) → (𝑥𝑜) ≠ ∅)
1512, 13, 14syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → (𝑥𝑜) ≠ ∅)
1610, 11, 15elrabd 3673 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
17 elunii 4888 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑥𝑥𝐶) → 𝑦 𝐶)
18 locfincmp.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑌 = 𝐶
1917, 18eleqtrrdi 2845 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑥𝑥𝐶) → 𝑦𝑌)
2019ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐶𝑦𝑥) → 𝑦𝑌)
2120adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦𝑌)
221, 18locfinbas 23458 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)
2322adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝑋 = 𝑌)
2423ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑋 = 𝑌)
2521, 24eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦𝑋)
26 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑋 = 𝑐)
2725, 26eleqtrd 2836 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦 𝑐)
28 eluni2 4887 . . . . . . . . . . . . . . . . . . 19 (𝑦 𝑐 ↔ ∃𝑜𝑐 𝑦𝑜)
2927, 28sylib 218 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → ∃𝑜𝑐 𝑦𝑜)
3016, 29reximddv 3156 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
3130expr 456 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (𝑦𝑥 → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3231exlimdv 1933 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (∃𝑦 𝑦𝑥 → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
33 n0 4328 . . . . . . . . . . . . . . 15 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
34 eliun 4971 . . . . . . . . . . . . . . 15 (𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ↔ ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
3532, 33, 343imtr4g 296 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (𝑥 ≠ ∅ → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3635expimpd 453 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → ((𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
378, 36biimtrid 242 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (𝑥 ∈ (𝐶 ∖ {∅}) → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3837ssrdv 3964 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
39 iunfi 9353 . . . . . . . . . . . . 13 ((𝑐 ∈ Fin ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin)
4039ex 412 . . . . . . . . . . . 12 (𝑐 ∈ Fin → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
41 ssfi 9185 . . . . . . . . . . . . 13 (( 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}) → (𝐶 ∖ {∅}) ∈ Fin)
4241expcom 413 . . . . . . . . . . . 12 ((𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} → ( 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
4340, 42sylan9 507 . . . . . . . . . . 11 ((𝑐 ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}) → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
447, 38, 43syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
4544expimpd 453 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) → ((𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
466, 45sylan2b 594 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ 𝑐 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
4746rexlimdva 3141 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
485, 47mpd 15 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∖ {∅}) ∈ Fin)
49 snfi 9055 . . . . . 6 {∅} ∈ Fin
50 unfi 9183 . . . . . 6 (((𝐶 ∖ {∅}) ∈ Fin ∧ {∅} ∈ Fin) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin)
5148, 49, 50sylancl 586 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin)
52 ssun1 4153 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {∅})
53 undif1 4451 . . . . . 6 ((𝐶 ∖ {∅}) ∪ {∅}) = (𝐶 ∪ {∅})
5452, 53sseqtrri 4008 . . . . 5 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})
55 ssfi 9185 . . . . 5 ((((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin ∧ 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})) → 𝐶 ∈ Fin)
5651, 54, 55sylancl 586 . . . 4 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝐶 ∈ Fin)
5756, 23jca 511 . . 3 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))
5857ex 412 . 2 (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))
59 cmptop 23331 . . 3 (𝐽 ∈ Comp → 𝐽 ∈ Top)
601, 18finlocfin 23456 . . . 4 ((𝐽 ∈ Top ∧ 𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽))
61603expib 1122 . . 3 (𝐽 ∈ Top → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)))
6259, 61syl 17 . 2 (𝐽 ∈ Comp → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)))
6358, 62impbid 212 1 (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883   ciun 4967  cfv 6530  Fincfn 8957  Topctop 22829  Compccmp 23322  LocFinclocfin 23440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-om 7860  df-1o 8478  df-en 8958  df-fin 8961  df-top 22830  df-cmp 23323  df-locfin 23443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator