MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dissnref Structured version   Visualization version   GIF version

Theorem dissnref 22133
Description: The set of singletons is a refinement of any open covering of the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
Assertion
Ref Expression
dissnref ((𝑋𝑉 𝑌 = 𝑋) → 𝐶Ref𝑌)
Distinct variable groups:   𝑢,𝐶,𝑥   𝑢,𝑉,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥

Proof of Theorem dissnref
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 ((𝑋𝑉 𝑌 = 𝑋) → 𝑌 = 𝑋)
2 dissnref.c . . . 4 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
32unisngl 22132 . . 3 𝑋 = 𝐶
41, 3eqtrdi 2849 . 2 ((𝑋𝑉 𝑌 = 𝑋) → 𝑌 = 𝐶)
5 simplr 768 . . . . . 6 ((((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ (𝑦𝑌𝑥𝑦)) → 𝑢 = {𝑥})
6 simprr 772 . . . . . . 7 ((((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ (𝑦𝑌𝑥𝑦)) → 𝑥𝑦)
76snssd 4702 . . . . . 6 ((((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ (𝑦𝑌𝑥𝑦)) → {𝑥} ⊆ 𝑦)
85, 7eqsstrd 3953 . . . . 5 ((((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ (𝑦𝑌𝑥𝑦)) → 𝑢𝑦)
9 simplr 768 . . . . . . 7 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥𝑋)
10 simp-4r 783 . . . . . . 7 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑌 = 𝑋)
119, 10eleqtrrd 2893 . . . . . 6 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥 𝑌)
12 eluni2 4804 . . . . . 6 (𝑥 𝑌 ↔ ∃𝑦𝑌 𝑥𝑦)
1311, 12sylib 221 . . . . 5 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ∃𝑦𝑌 𝑥𝑦)
148, 13reximddv 3234 . . . 4 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ∃𝑦𝑌 𝑢𝑦)
152abeq2i 2925 . . . . . 6 (𝑢𝐶 ↔ ∃𝑥𝑋 𝑢 = {𝑥})
1615biimpi 219 . . . . 5 (𝑢𝐶 → ∃𝑥𝑋 𝑢 = {𝑥})
1716adantl 485 . . . 4 (((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) → ∃𝑥𝑋 𝑢 = {𝑥})
1814, 17r19.29a 3248 . . 3 (((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) → ∃𝑦𝑌 𝑢𝑦)
1918ralrimiva 3149 . 2 ((𝑋𝑉 𝑌 = 𝑋) → ∀𝑢𝐶𝑦𝑌 𝑢𝑦)
20 pwexg 5244 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
21 simpr 488 . . . . . . . . 9 (((𝑢𝐶𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥})
22 snelpwi 5302 . . . . . . . . . 10 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
2322ad2antlr 726 . . . . . . . . 9 (((𝑢𝐶𝑥𝑋) ∧ 𝑢 = {𝑥}) → {𝑥} ∈ 𝒫 𝑋)
2421, 23eqeltrd 2890 . . . . . . . 8 (((𝑢𝐶𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝒫 𝑋)
2524, 16r19.29a 3248 . . . . . . 7 (𝑢𝐶𝑢 ∈ 𝒫 𝑋)
2625ssriv 3919 . . . . . 6 𝐶 ⊆ 𝒫 𝑋
2726a1i 11 . . . . 5 (𝑋𝑉𝐶 ⊆ 𝒫 𝑋)
2820, 27ssexd 5192 . . . 4 (𝑋𝑉𝐶 ∈ V)
2928adantr 484 . . 3 ((𝑋𝑉 𝑌 = 𝑋) → 𝐶 ∈ V)
30 eqid 2798 . . . 4 𝐶 = 𝐶
31 eqid 2798 . . . 4 𝑌 = 𝑌
3230, 31isref 22114 . . 3 (𝐶 ∈ V → (𝐶Ref𝑌 ↔ ( 𝑌 = 𝐶 ∧ ∀𝑢𝐶𝑦𝑌 𝑢𝑦)))
3329, 32syl 17 . 2 ((𝑋𝑉 𝑌 = 𝑋) → (𝐶Ref𝑌 ↔ ( 𝑌 = 𝐶 ∧ ∀𝑢𝐶𝑦𝑌 𝑢𝑦)))
344, 19, 33mpbir2and 712 1 ((𝑋𝑉 𝑌 = 𝑋) → 𝐶Ref𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441  wss 3881  𝒫 cpw 4497  {csn 4525   cuni 4800   class class class wbr 5030  Refcref 22107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-ref 22110
This theorem is referenced by:  dispcmp  31212
  Copyright terms: Public domain W3C validator