MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dissnref Structured version   Visualization version   GIF version

Theorem dissnref 23252
Description: The set of singletons is a refinement of any open covering of the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
Assertion
Ref Expression
dissnref ((𝑋𝑉 𝑌 = 𝑋) → 𝐶Ref𝑌)
Distinct variable groups:   𝑢,𝐶,𝑥   𝑢,𝑉,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥

Proof of Theorem dissnref
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . 3 ((𝑋𝑉 𝑌 = 𝑋) → 𝑌 = 𝑋)
2 dissnref.c . . . 4 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
32unisngl 23251 . . 3 𝑋 = 𝐶
41, 3eqtrdi 2786 . 2 ((𝑋𝑉 𝑌 = 𝑋) → 𝑌 = 𝐶)
5 simplr 765 . . . . . 6 ((((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ (𝑦𝑌𝑥𝑦)) → 𝑢 = {𝑥})
6 simprr 769 . . . . . . 7 ((((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ (𝑦𝑌𝑥𝑦)) → 𝑥𝑦)
76snssd 4811 . . . . . 6 ((((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ (𝑦𝑌𝑥𝑦)) → {𝑥} ⊆ 𝑦)
85, 7eqsstrd 4019 . . . . 5 ((((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ (𝑦𝑌𝑥𝑦)) → 𝑢𝑦)
9 simplr 765 . . . . . . 7 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥𝑋)
10 simp-4r 780 . . . . . . 7 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑌 = 𝑋)
119, 10eleqtrrd 2834 . . . . . 6 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥 𝑌)
12 eluni2 4911 . . . . . 6 (𝑥 𝑌 ↔ ∃𝑦𝑌 𝑥𝑦)
1311, 12sylib 217 . . . . 5 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ∃𝑦𝑌 𝑥𝑦)
148, 13reximddv 3169 . . . 4 (((((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ∃𝑦𝑌 𝑢𝑦)
152eqabri 2875 . . . . . 6 (𝑢𝐶 ↔ ∃𝑥𝑋 𝑢 = {𝑥})
1615biimpi 215 . . . . 5 (𝑢𝐶 → ∃𝑥𝑋 𝑢 = {𝑥})
1716adantl 480 . . . 4 (((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) → ∃𝑥𝑋 𝑢 = {𝑥})
1814, 17r19.29a 3160 . . 3 (((𝑋𝑉 𝑌 = 𝑋) ∧ 𝑢𝐶) → ∃𝑦𝑌 𝑢𝑦)
1918ralrimiva 3144 . 2 ((𝑋𝑉 𝑌 = 𝑋) → ∀𝑢𝐶𝑦𝑌 𝑢𝑦)
20 pwexg 5375 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
21 simpr 483 . . . . . . . . 9 (((𝑢𝐶𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥})
22 snelpwi 5442 . . . . . . . . . 10 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
2322ad2antlr 723 . . . . . . . . 9 (((𝑢𝐶𝑥𝑋) ∧ 𝑢 = {𝑥}) → {𝑥} ∈ 𝒫 𝑋)
2421, 23eqeltrd 2831 . . . . . . . 8 (((𝑢𝐶𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝒫 𝑋)
2524, 16r19.29a 3160 . . . . . . 7 (𝑢𝐶𝑢 ∈ 𝒫 𝑋)
2625ssriv 3985 . . . . . 6 𝐶 ⊆ 𝒫 𝑋
2726a1i 11 . . . . 5 (𝑋𝑉𝐶 ⊆ 𝒫 𝑋)
2820, 27ssexd 5323 . . . 4 (𝑋𝑉𝐶 ∈ V)
2928adantr 479 . . 3 ((𝑋𝑉 𝑌 = 𝑋) → 𝐶 ∈ V)
30 eqid 2730 . . . 4 𝐶 = 𝐶
31 eqid 2730 . . . 4 𝑌 = 𝑌
3230, 31isref 23233 . . 3 (𝐶 ∈ V → (𝐶Ref𝑌 ↔ ( 𝑌 = 𝐶 ∧ ∀𝑢𝐶𝑦𝑌 𝑢𝑦)))
3329, 32syl 17 . 2 ((𝑋𝑉 𝑌 = 𝑋) → (𝐶Ref𝑌 ↔ ( 𝑌 = 𝐶 ∧ ∀𝑢𝐶𝑦𝑌 𝑢𝑦)))
344, 19, 33mpbir2and 709 1 ((𝑋𝑉 𝑌 = 𝑋) → 𝐶Ref𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  {cab 2707  wral 3059  wrex 3068  Vcvv 3472  wss 3947  𝒫 cpw 4601  {csn 4627   cuni 4907   class class class wbr 5147  Refcref 23226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-ref 23229
This theorem is referenced by:  dispcmp  33137
  Copyright terms: Public domain W3C validator