MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dissnlocfin Structured version   Visualization version   GIF version

Theorem dissnlocfin 23426
Description: The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
Assertion
Ref Expression
dissnlocfin (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Distinct variable groups:   𝑢,𝐶,𝑥   𝑢,𝑉,𝑥   𝑢,𝑋,𝑥

Proof of Theorem dissnlocfin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 22891 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 eqidd 2728 . 2 (𝑋𝑉𝑋 = 𝑋)
3 snelpwi 5439 . . . . 5 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
43adantl 481 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑧} ∈ 𝒫 𝑋)
5 vsnid 4661 . . . . 5 𝑧 ∈ {𝑧}
65a1i 11 . . . 4 ((𝑋𝑉𝑧𝑋) → 𝑧 ∈ {𝑧})
7 nfv 1910 . . . . . 6 𝑢(𝑋𝑉𝑧𝑋)
8 nfrab1 3446 . . . . . 6 𝑢{𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅}
9 nfcv 2898 . . . . . 6 𝑢{{𝑧}}
10 dissnref.c . . . . . . . . . 10 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
1110eqabri 2872 . . . . . . . . 9 (𝑢𝐶 ↔ ∃𝑥𝑋 𝑢 = {𝑥})
1211anbi1i 623 . . . . . . . 8 ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
13 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥})
14 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → 𝑢 = {𝑥})
1514ineq1d 4207 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ({𝑥} ∩ {𝑧}))
16 disjsn2 4712 . . . . . . . . . . . . . . . . . 18 (𝑥𝑧 → ({𝑥} ∩ {𝑧}) = ∅)
1716adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ({𝑥} ∩ {𝑧}) = ∅)
1815, 17eqtrd 2767 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ∅)
19 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) ≠ ∅)
2019neneqd 2940 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ¬ (𝑢 ∩ {𝑧}) = ∅)
2118, 20pm2.65da 816 . . . . . . . . . . . . . . 15 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ¬ 𝑥𝑧)
22 nne 2939 . . . . . . . . . . . . . . 15 𝑥𝑧𝑥 = 𝑧)
2321, 22sylib 217 . . . . . . . . . . . . . 14 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥 = 𝑧)
2423sneqd 4636 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → {𝑥} = {𝑧})
2513, 24eqtrd 2767 . . . . . . . . . . . 12 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2625r19.29an 3153 . . . . . . . . . . 11 ((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2726an32s 651 . . . . . . . . . 10 ((((𝑋𝑉𝑧𝑋) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) → 𝑢 = {𝑧})
2827anasss 466 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) → 𝑢 = {𝑧})
29 sneq 4634 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3029rspceeqv 3629 . . . . . . . . . . 11 ((𝑧𝑋𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
3130adantll 713 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
32 simpr 484 . . . . . . . . . . . . 13 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → 𝑢 = {𝑧})
3332ineq1d 4207 . . . . . . . . . . . 12 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = ({𝑧} ∩ {𝑧}))
34 inidm 4214 . . . . . . . . . . . 12 ({𝑧} ∩ {𝑧}) = {𝑧}
3533, 34eqtrdi 2783 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = {𝑧})
36 vex 3473 . . . . . . . . . . . . 13 𝑧 ∈ V
3736snnz 4776 . . . . . . . . . . . 12 {𝑧} ≠ ∅
3837a1i 11 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → {𝑧} ≠ ∅)
3935, 38eqnetrd 3003 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) ≠ ∅)
4031, 39jca 511 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
4128, 40impbida 800 . . . . . . . 8 ((𝑋𝑉𝑧𝑋) → ((∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
4212, 41bitrid 283 . . . . . . 7 ((𝑋𝑉𝑧𝑋) → ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
43 rabid 3447 . . . . . . 7 (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ (𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
44 velsn 4640 . . . . . . 7 (𝑢 ∈ {{𝑧}} ↔ 𝑢 = {𝑧})
4542, 43, 443bitr4g 314 . . . . . 6 ((𝑋𝑉𝑧𝑋) → (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ 𝑢 ∈ {{𝑧}}))
467, 8, 9, 45eqrd 3997 . . . . 5 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} = {{𝑧}})
47 snfi 9062 . . . . 5 {{𝑧}} ∈ Fin
4846, 47eqeltrdi 2836 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)
49 eleq2 2817 . . . . . 6 (𝑦 = {𝑧} → (𝑧𝑦𝑧 ∈ {𝑧}))
50 ineq2 4202 . . . . . . . . 9 (𝑦 = {𝑧} → (𝑢𝑦) = (𝑢 ∩ {𝑧}))
5150neeq1d 2995 . . . . . . . 8 (𝑦 = {𝑧} → ((𝑢𝑦) ≠ ∅ ↔ (𝑢 ∩ {𝑧}) ≠ ∅))
5251rabbidv 3435 . . . . . . 7 (𝑦 = {𝑧} → {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} = {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅})
5352eleq1d 2813 . . . . . 6 (𝑦 = {𝑧} → ({𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin ↔ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin))
5449, 53anbi12d 630 . . . . 5 (𝑦 = {𝑧} → ((𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin) ↔ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)))
5554rspcev 3607 . . . 4 (({𝑧} ∈ 𝒫 𝑋 ∧ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
564, 6, 48, 55syl12anc 836 . . 3 ((𝑋𝑉𝑧𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
5756ralrimiva 3141 . 2 (𝑋𝑉 → ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
58 unipw 5446 . . . 4 𝒫 𝑋 = 𝑋
5958eqcomi 2736 . . 3 𝑋 = 𝒫 𝑋
6010unisngl 23424 . . 3 𝑋 = 𝐶
6159, 60islocfin 23414 . 2 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑋 ∧ ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin)))
621, 2, 57, 61syl3anbrc 1341 1 (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  {cab 2704  wne 2935  wral 3056  wrex 3065  {crab 3427  cin 3943  c0 4318  𝒫 cpw 4598  {csn 4624   cuni 4903  cfv 6542  Fincfn 8957  Topctop 22788  LocFinclocfin 23401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7865  df-1o 8480  df-en 8958  df-fin 8961  df-top 22789  df-locfin 23404
This theorem is referenced by:  dispcmp  33450
  Copyright terms: Public domain W3C validator