MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dissnlocfin Structured version   Visualization version   GIF version

Theorem dissnlocfin 23538
Description: The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
Assertion
Ref Expression
dissnlocfin (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Distinct variable groups:   𝑢,𝐶,𝑥   𝑢,𝑉,𝑥   𝑢,𝑋,𝑥

Proof of Theorem dissnlocfin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 23003 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 eqidd 2737 . 2 (𝑋𝑉𝑋 = 𝑋)
3 snelpwi 5447 . . . . 5 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
43adantl 481 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑧} ∈ 𝒫 𝑋)
5 vsnid 4662 . . . . 5 𝑧 ∈ {𝑧}
65a1i 11 . . . 4 ((𝑋𝑉𝑧𝑋) → 𝑧 ∈ {𝑧})
7 nfv 1913 . . . . . 6 𝑢(𝑋𝑉𝑧𝑋)
8 nfrab1 3456 . . . . . 6 𝑢{𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅}
9 nfcv 2904 . . . . . 6 𝑢{{𝑧}}
10 dissnref.c . . . . . . . . . 10 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
1110eqabri 2884 . . . . . . . . 9 (𝑢𝐶 ↔ ∃𝑥𝑋 𝑢 = {𝑥})
1211anbi1i 624 . . . . . . . 8 ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
13 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥})
14 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → 𝑢 = {𝑥})
1514ineq1d 4218 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ({𝑥} ∩ {𝑧}))
16 disjsn2 4711 . . . . . . . . . . . . . . . . . 18 (𝑥𝑧 → ({𝑥} ∩ {𝑧}) = ∅)
1716adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ({𝑥} ∩ {𝑧}) = ∅)
1815, 17eqtrd 2776 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ∅)
19 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) ≠ ∅)
2019neneqd 2944 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ¬ (𝑢 ∩ {𝑧}) = ∅)
2118, 20pm2.65da 816 . . . . . . . . . . . . . . 15 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ¬ 𝑥𝑧)
22 nne 2943 . . . . . . . . . . . . . . 15 𝑥𝑧𝑥 = 𝑧)
2321, 22sylib 218 . . . . . . . . . . . . . 14 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥 = 𝑧)
2423sneqd 4637 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → {𝑥} = {𝑧})
2513, 24eqtrd 2776 . . . . . . . . . . . 12 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2625r19.29an 3157 . . . . . . . . . . 11 ((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2726an32s 652 . . . . . . . . . 10 ((((𝑋𝑉𝑧𝑋) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) → 𝑢 = {𝑧})
2827anasss 466 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) → 𝑢 = {𝑧})
29 sneq 4635 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3029rspceeqv 3644 . . . . . . . . . . 11 ((𝑧𝑋𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
3130adantll 714 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
32 simpr 484 . . . . . . . . . . . . 13 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → 𝑢 = {𝑧})
3332ineq1d 4218 . . . . . . . . . . . 12 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = ({𝑧} ∩ {𝑧}))
34 inidm 4226 . . . . . . . . . . . 12 ({𝑧} ∩ {𝑧}) = {𝑧}
3533, 34eqtrdi 2792 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = {𝑧})
36 vex 3483 . . . . . . . . . . . . 13 𝑧 ∈ V
3736snnz 4775 . . . . . . . . . . . 12 {𝑧} ≠ ∅
3837a1i 11 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → {𝑧} ≠ ∅)
3935, 38eqnetrd 3007 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) ≠ ∅)
4031, 39jca 511 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
4128, 40impbida 800 . . . . . . . 8 ((𝑋𝑉𝑧𝑋) → ((∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
4212, 41bitrid 283 . . . . . . 7 ((𝑋𝑉𝑧𝑋) → ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
43 rabid 3457 . . . . . . 7 (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ (𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
44 velsn 4641 . . . . . . 7 (𝑢 ∈ {{𝑧}} ↔ 𝑢 = {𝑧})
4542, 43, 443bitr4g 314 . . . . . 6 ((𝑋𝑉𝑧𝑋) → (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ 𝑢 ∈ {{𝑧}}))
467, 8, 9, 45eqrd 4002 . . . . 5 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} = {{𝑧}})
47 snfi 9084 . . . . 5 {{𝑧}} ∈ Fin
4846, 47eqeltrdi 2848 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)
49 eleq2 2829 . . . . . 6 (𝑦 = {𝑧} → (𝑧𝑦𝑧 ∈ {𝑧}))
50 ineq2 4213 . . . . . . . . 9 (𝑦 = {𝑧} → (𝑢𝑦) = (𝑢 ∩ {𝑧}))
5150neeq1d 2999 . . . . . . . 8 (𝑦 = {𝑧} → ((𝑢𝑦) ≠ ∅ ↔ (𝑢 ∩ {𝑧}) ≠ ∅))
5251rabbidv 3443 . . . . . . 7 (𝑦 = {𝑧} → {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} = {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅})
5352eleq1d 2825 . . . . . 6 (𝑦 = {𝑧} → ({𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin ↔ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin))
5449, 53anbi12d 632 . . . . 5 (𝑦 = {𝑧} → ((𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin) ↔ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)))
5554rspcev 3621 . . . 4 (({𝑧} ∈ 𝒫 𝑋 ∧ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
564, 6, 48, 55syl12anc 836 . . 3 ((𝑋𝑉𝑧𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
5756ralrimiva 3145 . 2 (𝑋𝑉 → ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
58 unipw 5454 . . . 4 𝒫 𝑋 = 𝑋
5958eqcomi 2745 . . 3 𝑋 = 𝒫 𝑋
6010unisngl 23536 . . 3 𝑋 = 𝐶
6159, 60islocfin 23526 . 2 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑋 ∧ ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin)))
621, 2, 57, 61syl3anbrc 1343 1 (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2713  wne 2939  wral 3060  wrex 3069  {crab 3435  cin 3949  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906  cfv 6560  Fincfn 8986  Topctop 22900  LocFinclocfin 23513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-1o 8507  df-en 8987  df-fin 8990  df-top 22901  df-locfin 23516
This theorem is referenced by:  dispcmp  33859
  Copyright terms: Public domain W3C validator