MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dissnlocfin Structured version   Visualization version   GIF version

Theorem dissnlocfin 21809
Description: The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
Assertion
Ref Expression
dissnlocfin (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Distinct variable groups:   𝑢,𝐶,𝑥   𝑢,𝑉,𝑥   𝑢,𝑋,𝑥

Proof of Theorem dissnlocfin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 21275 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 eqidd 2794 . 2 (𝑋𝑉𝑋 = 𝑋)
3 snelpwi 5221 . . . . 5 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
43adantl 482 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑧} ∈ 𝒫 𝑋)
5 vsnid 4501 . . . . 5 𝑧 ∈ {𝑧}
65a1i 11 . . . 4 ((𝑋𝑉𝑧𝑋) → 𝑧 ∈ {𝑧})
7 nfv 1890 . . . . . 6 𝑢(𝑋𝑉𝑧𝑋)
8 nfrab1 3341 . . . . . 6 𝑢{𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅}
9 nfcv 2947 . . . . . 6 𝑢{{𝑧}}
10 dissnref.c . . . . . . . . . 10 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
1110abeq2i 2915 . . . . . . . . 9 (𝑢𝐶 ↔ ∃𝑥𝑋 𝑢 = {𝑥})
1211anbi1i 623 . . . . . . . 8 ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
13 simpr 485 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥})
14 simplr 765 . . . . . . . . . . . . . . . . . 18 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → 𝑢 = {𝑥})
1514ineq1d 4103 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ({𝑥} ∩ {𝑧}))
16 disjsn2 4549 . . . . . . . . . . . . . . . . . 18 (𝑥𝑧 → ({𝑥} ∩ {𝑧}) = ∅)
1716adantl 482 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ({𝑥} ∩ {𝑧}) = ∅)
1815, 17eqtrd 2829 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ∅)
19 simp-4r 780 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) ≠ ∅)
2019neneqd 2987 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ¬ (𝑢 ∩ {𝑧}) = ∅)
2118, 20pm2.65da 813 . . . . . . . . . . . . . . 15 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ¬ 𝑥𝑧)
22 nne 2986 . . . . . . . . . . . . . . 15 𝑥𝑧𝑥 = 𝑧)
2321, 22sylib 219 . . . . . . . . . . . . . 14 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥 = 𝑧)
2423sneqd 4478 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → {𝑥} = {𝑧})
2513, 24eqtrd 2829 . . . . . . . . . . . 12 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2625r19.29an 3248 . . . . . . . . . . 11 ((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2726an32s 648 . . . . . . . . . 10 ((((𝑋𝑉𝑧𝑋) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) → 𝑢 = {𝑧})
2827anasss 467 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) → 𝑢 = {𝑧})
29 sneq 4476 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3029rspceeqv 3572 . . . . . . . . . . 11 ((𝑧𝑋𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
3130adantll 710 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
32 simpr 485 . . . . . . . . . . . . 13 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → 𝑢 = {𝑧})
3332ineq1d 4103 . . . . . . . . . . . 12 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = ({𝑧} ∩ {𝑧}))
34 inidm 4110 . . . . . . . . . . . 12 ({𝑧} ∩ {𝑧}) = {𝑧}
3533, 34syl6eq 2845 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = {𝑧})
36 vex 3435 . . . . . . . . . . . . 13 𝑧 ∈ V
3736snnz 4612 . . . . . . . . . . . 12 {𝑧} ≠ ∅
3837a1i 11 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → {𝑧} ≠ ∅)
3935, 38eqnetrd 3049 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) ≠ ∅)
4031, 39jca 512 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
4128, 40impbida 797 . . . . . . . 8 ((𝑋𝑉𝑧𝑋) → ((∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
4212, 41syl5bb 284 . . . . . . 7 ((𝑋𝑉𝑧𝑋) → ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
43 rabid 3334 . . . . . . 7 (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ (𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
44 velsn 4482 . . . . . . 7 (𝑢 ∈ {{𝑧}} ↔ 𝑢 = {𝑧})
4542, 43, 443bitr4g 315 . . . . . 6 ((𝑋𝑉𝑧𝑋) → (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ 𝑢 ∈ {{𝑧}}))
467, 8, 9, 45eqrd 3903 . . . . 5 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} = {{𝑧}})
47 snfi 8432 . . . . 5 {{𝑧}} ∈ Fin
4846, 47syl6eqel 2889 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)
49 eleq2 2869 . . . . . 6 (𝑦 = {𝑧} → (𝑧𝑦𝑧 ∈ {𝑧}))
50 ineq2 4098 . . . . . . . . 9 (𝑦 = {𝑧} → (𝑢𝑦) = (𝑢 ∩ {𝑧}))
5150neeq1d 3041 . . . . . . . 8 (𝑦 = {𝑧} → ((𝑢𝑦) ≠ ∅ ↔ (𝑢 ∩ {𝑧}) ≠ ∅))
5251rabbidv 3420 . . . . . . 7 (𝑦 = {𝑧} → {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} = {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅})
5352eleq1d 2865 . . . . . 6 (𝑦 = {𝑧} → ({𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin ↔ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin))
5449, 53anbi12d 630 . . . . 5 (𝑦 = {𝑧} → ((𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin) ↔ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)))
5554rspcev 3554 . . . 4 (({𝑧} ∈ 𝒫 𝑋 ∧ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
564, 6, 48, 55syl12anc 833 . . 3 ((𝑋𝑉𝑧𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
5756ralrimiva 3147 . 2 (𝑋𝑉 → ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
58 unipw 5227 . . . 4 𝒫 𝑋 = 𝑋
5958eqcomi 2802 . . 3 𝑋 = 𝒫 𝑋
6010unisngl 21807 . . 3 𝑋 = 𝐶
6159, 60islocfin 21797 . 2 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑋 ∧ ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin)))
621, 2, 57, 61syl3anbrc 1334 1 (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1520  wcel 2079  {cab 2773  wne 2982  wral 3103  wrex 3104  {crab 3107  cin 3853  c0 4206  𝒫 cpw 4447  {csn 4466   cuni 4739  cfv 6217  Fincfn 8347  Topctop 21173  LocFinclocfin 21784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-om 7428  df-1o 7944  df-en 8348  df-fin 8351  df-top 21174  df-locfin 21787
This theorem is referenced by:  dispcmp  30696
  Copyright terms: Public domain W3C validator