| Step | Hyp | Ref
| Expression |
| 1 | | distop 22938 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top) |
| 2 | | eqidd 2737 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝑋 = 𝑋) |
| 3 | | snelpwi 5423 |
. . . . 5
⊢ (𝑧 ∈ 𝑋 → {𝑧} ∈ 𝒫 𝑋) |
| 4 | 3 | adantl 481 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) → {𝑧} ∈ 𝒫 𝑋) |
| 5 | | vsnid 4644 |
. . . . 5
⊢ 𝑧 ∈ {𝑧} |
| 6 | 5 | a1i 11 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ {𝑧}) |
| 7 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑢(𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) |
| 8 | | nfrab1 3441 |
. . . . . 6
⊢
Ⅎ𝑢{𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} |
| 9 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑢{{𝑧}} |
| 10 | | dissnref.c |
. . . . . . . . . 10
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} |
| 11 | 10 | eqabri 2879 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}) |
| 12 | 11 | anbi1i 624 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ (∃𝑥 ∈ 𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) |
| 13 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥}) |
| 14 | | simplr 768 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥 ≠ 𝑧) → 𝑢 = {𝑥}) |
| 15 | 14 | ineq1d 4199 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥 ≠ 𝑧) → (𝑢 ∩ {𝑧}) = ({𝑥} ∩ {𝑧})) |
| 16 | | disjsn2 4693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ≠ 𝑧 → ({𝑥} ∩ {𝑧}) = ∅) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥 ≠ 𝑧) → ({𝑥} ∩ {𝑧}) = ∅) |
| 18 | 15, 17 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥 ≠ 𝑧) → (𝑢 ∩ {𝑧}) = ∅) |
| 19 | | simp-4r 783 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥 ≠ 𝑧) → (𝑢 ∩ {𝑧}) ≠ ∅) |
| 20 | 19 | neneqd 2938 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥 ≠ 𝑧) → ¬ (𝑢 ∩ {𝑧}) = ∅) |
| 21 | 18, 20 | pm2.65da 816 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) → ¬ 𝑥 ≠ 𝑧) |
| 22 | | nne 2937 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 ≠ 𝑧 ↔ 𝑥 = 𝑧) |
| 23 | 21, 22 | sylib 218 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) → 𝑥 = 𝑧) |
| 24 | 23 | sneqd 4618 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) → {𝑥} = {𝑧}) |
| 25 | 13, 24 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥 ∈ 𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑧}) |
| 26 | 25 | r19.29an 3145 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}) → 𝑢 = {𝑧}) |
| 27 | 26 | an32s 652 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) → 𝑢 = {𝑧}) |
| 28 | 27 | anasss 466 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (∃𝑥 ∈ 𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) → 𝑢 = {𝑧}) |
| 29 | | sneq 4616 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
| 30 | 29 | rspceeqv 3629 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑢 = {𝑧}) → ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}) |
| 31 | 30 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ 𝑢 = {𝑧}) → ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}) |
| 32 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ 𝑢 = {𝑧}) → 𝑢 = {𝑧}) |
| 33 | 32 | ineq1d 4199 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = ({𝑧} ∩ {𝑧})) |
| 34 | | inidm 4207 |
. . . . . . . . . . . 12
⊢ ({𝑧} ∩ {𝑧}) = {𝑧} |
| 35 | 33, 34 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = {𝑧}) |
| 36 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
| 37 | 36 | snnz 4757 |
. . . . . . . . . . . 12
⊢ {𝑧} ≠ ∅ |
| 38 | 37 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ 𝑢 = {𝑧}) → {𝑧} ≠ ∅) |
| 39 | 35, 38 | eqnetrd 3000 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) ≠ ∅) |
| 40 | 31, 39 | jca 511 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ 𝑢 = {𝑧}) → (∃𝑥 ∈ 𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) |
| 41 | 28, 40 | impbida 800 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) → ((∃𝑥 ∈ 𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧})) |
| 42 | 12, 41 | bitrid 283 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) → ((𝑢 ∈ 𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧})) |
| 43 | | rabid 3442 |
. . . . . . 7
⊢ (𝑢 ∈ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ (𝑢 ∈ 𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) |
| 44 | | velsn 4622 |
. . . . . . 7
⊢ (𝑢 ∈ {{𝑧}} ↔ 𝑢 = {𝑧}) |
| 45 | 42, 43, 44 | 3bitr4g 314 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) → (𝑢 ∈ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ 𝑢 ∈ {{𝑧}})) |
| 46 | 7, 8, 9, 45 | eqrd 3983 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) → {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} = {{𝑧}}) |
| 47 | | snfi 9062 |
. . . . 5
⊢ {{𝑧}} ∈ Fin |
| 48 | 46, 47 | eqeltrdi 2843 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) → {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin) |
| 49 | | eleq2 2824 |
. . . . . 6
⊢ (𝑦 = {𝑧} → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ {𝑧})) |
| 50 | | ineq2 4194 |
. . . . . . . . 9
⊢ (𝑦 = {𝑧} → (𝑢 ∩ 𝑦) = (𝑢 ∩ {𝑧})) |
| 51 | 50 | neeq1d 2992 |
. . . . . . . 8
⊢ (𝑦 = {𝑧} → ((𝑢 ∩ 𝑦) ≠ ∅ ↔ (𝑢 ∩ {𝑧}) ≠ ∅)) |
| 52 | 51 | rabbidv 3428 |
. . . . . . 7
⊢ (𝑦 = {𝑧} → {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ 𝑦) ≠ ∅} = {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅}) |
| 53 | 52 | eleq1d 2820 |
. . . . . 6
⊢ (𝑦 = {𝑧} → ({𝑢 ∈ 𝐶 ∣ (𝑢 ∩ 𝑦) ≠ ∅} ∈ Fin ↔ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈
Fin)) |
| 54 | 49, 53 | anbi12d 632 |
. . . . 5
⊢ (𝑦 = {𝑧} → ((𝑧 ∈ 𝑦 ∧ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ 𝑦) ≠ ∅} ∈ Fin) ↔ (𝑧 ∈ {𝑧} ∧ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈
Fin))) |
| 55 | 54 | rspcev 3606 |
. . . 4
⊢ (({𝑧} ∈ 𝒫 𝑋 ∧ (𝑧 ∈ {𝑧} ∧ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)) →
∃𝑦 ∈ 𝒫
𝑋(𝑧 ∈ 𝑦 ∧ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ 𝑦) ≠ ∅} ∈ Fin)) |
| 56 | 4, 6, 48, 55 | syl12anc 836 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑧 ∈ 𝑦 ∧ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ 𝑦) ≠ ∅} ∈ Fin)) |
| 57 | 56 | ralrimiva 3133 |
. 2
⊢ (𝑋 ∈ 𝑉 → ∀𝑧 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝑋(𝑧 ∈ 𝑦 ∧ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ 𝑦) ≠ ∅} ∈ Fin)) |
| 58 | | unipw 5430 |
. . . 4
⊢ ∪ 𝒫 𝑋 = 𝑋 |
| 59 | 58 | eqcomi 2745 |
. . 3
⊢ 𝑋 = ∪
𝒫 𝑋 |
| 60 | 10 | unisngl 23470 |
. . 3
⊢ 𝑋 = ∪
𝐶 |
| 61 | 59, 60 | islocfin 23460 |
. 2
⊢ (𝐶 ∈ (LocFin‘𝒫
𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑋 ∧ ∀𝑧 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝑋(𝑧 ∈ 𝑦 ∧ {𝑢 ∈ 𝐶 ∣ (𝑢 ∩ 𝑦) ≠ ∅} ∈
Fin))) |
| 62 | 1, 2, 57, 61 | syl3anbrc 1344 |
1
⊢ (𝑋 ∈ 𝑉 → 𝐶 ∈ (LocFin‘𝒫 𝑋)) |