MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dissnlocfin Structured version   Visualization version   GIF version

Theorem dissnlocfin 23414
Description: The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
Assertion
Ref Expression
dissnlocfin (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Distinct variable groups:   𝑢,𝐶,𝑥   𝑢,𝑉,𝑥   𝑢,𝑋,𝑥

Proof of Theorem dissnlocfin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 22880 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 eqidd 2730 . 2 (𝑋𝑉𝑋 = 𝑋)
3 snelpwi 5386 . . . . 5 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
43adantl 481 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑧} ∈ 𝒫 𝑋)
5 vsnid 4615 . . . . 5 𝑧 ∈ {𝑧}
65a1i 11 . . . 4 ((𝑋𝑉𝑧𝑋) → 𝑧 ∈ {𝑧})
7 nfv 1914 . . . . . 6 𝑢(𝑋𝑉𝑧𝑋)
8 nfrab1 3415 . . . . . 6 𝑢{𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅}
9 nfcv 2891 . . . . . 6 𝑢{{𝑧}}
10 dissnref.c . . . . . . . . . 10 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
1110eqabri 2871 . . . . . . . . 9 (𝑢𝐶 ↔ ∃𝑥𝑋 𝑢 = {𝑥})
1211anbi1i 624 . . . . . . . 8 ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
13 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥})
14 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → 𝑢 = {𝑥})
1514ineq1d 4170 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ({𝑥} ∩ {𝑧}))
16 disjsn2 4664 . . . . . . . . . . . . . . . . . 18 (𝑥𝑧 → ({𝑥} ∩ {𝑧}) = ∅)
1716adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ({𝑥} ∩ {𝑧}) = ∅)
1815, 17eqtrd 2764 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ∅)
19 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) ≠ ∅)
2019neneqd 2930 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ¬ (𝑢 ∩ {𝑧}) = ∅)
2118, 20pm2.65da 816 . . . . . . . . . . . . . . 15 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ¬ 𝑥𝑧)
22 nne 2929 . . . . . . . . . . . . . . 15 𝑥𝑧𝑥 = 𝑧)
2321, 22sylib 218 . . . . . . . . . . . . . 14 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥 = 𝑧)
2423sneqd 4589 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → {𝑥} = {𝑧})
2513, 24eqtrd 2764 . . . . . . . . . . . 12 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2625r19.29an 3133 . . . . . . . . . . 11 ((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2726an32s 652 . . . . . . . . . 10 ((((𝑋𝑉𝑧𝑋) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) → 𝑢 = {𝑧})
2827anasss 466 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) → 𝑢 = {𝑧})
29 sneq 4587 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3029rspceeqv 3600 . . . . . . . . . . 11 ((𝑧𝑋𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
3130adantll 714 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
32 simpr 484 . . . . . . . . . . . . 13 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → 𝑢 = {𝑧})
3332ineq1d 4170 . . . . . . . . . . . 12 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = ({𝑧} ∩ {𝑧}))
34 inidm 4178 . . . . . . . . . . . 12 ({𝑧} ∩ {𝑧}) = {𝑧}
3533, 34eqtrdi 2780 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = {𝑧})
36 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
3736snnz 4728 . . . . . . . . . . . 12 {𝑧} ≠ ∅
3837a1i 11 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → {𝑧} ≠ ∅)
3935, 38eqnetrd 2992 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) ≠ ∅)
4031, 39jca 511 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
4128, 40impbida 800 . . . . . . . 8 ((𝑋𝑉𝑧𝑋) → ((∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
4212, 41bitrid 283 . . . . . . 7 ((𝑋𝑉𝑧𝑋) → ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
43 rabid 3416 . . . . . . 7 (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ (𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
44 velsn 4593 . . . . . . 7 (𝑢 ∈ {{𝑧}} ↔ 𝑢 = {𝑧})
4542, 43, 443bitr4g 314 . . . . . 6 ((𝑋𝑉𝑧𝑋) → (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ 𝑢 ∈ {{𝑧}}))
467, 8, 9, 45eqrd 3955 . . . . 5 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} = {{𝑧}})
47 snfi 8968 . . . . 5 {{𝑧}} ∈ Fin
4846, 47eqeltrdi 2836 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)
49 eleq2 2817 . . . . . 6 (𝑦 = {𝑧} → (𝑧𝑦𝑧 ∈ {𝑧}))
50 ineq2 4165 . . . . . . . . 9 (𝑦 = {𝑧} → (𝑢𝑦) = (𝑢 ∩ {𝑧}))
5150neeq1d 2984 . . . . . . . 8 (𝑦 = {𝑧} → ((𝑢𝑦) ≠ ∅ ↔ (𝑢 ∩ {𝑧}) ≠ ∅))
5251rabbidv 3402 . . . . . . 7 (𝑦 = {𝑧} → {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} = {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅})
5352eleq1d 2813 . . . . . 6 (𝑦 = {𝑧} → ({𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin ↔ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin))
5449, 53anbi12d 632 . . . . 5 (𝑦 = {𝑧} → ((𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin) ↔ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)))
5554rspcev 3577 . . . 4 (({𝑧} ∈ 𝒫 𝑋 ∧ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
564, 6, 48, 55syl12anc 836 . . 3 ((𝑋𝑉𝑧𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
5756ralrimiva 3121 . 2 (𝑋𝑉 → ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
58 unipw 5393 . . . 4 𝒫 𝑋 = 𝑋
5958eqcomi 2738 . . 3 𝑋 = 𝒫 𝑋
6010unisngl 23412 . . 3 𝑋 = 𝐶
6159, 60islocfin 23402 . 2 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑋 ∧ ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin)))
621, 2, 57, 61syl3anbrc 1344 1 (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3394  cin 3902  c0 4284  𝒫 cpw 4551  {csn 4577   cuni 4858  cfv 6482  Fincfn 8872  Topctop 22778  LocFinclocfin 23389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-fin 8876  df-top 22779  df-locfin 23392
This theorem is referenced by:  dispcmp  33842
  Copyright terms: Public domain W3C validator