| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrfn | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgrfn | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isupgr.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | upgrf 28989 | . . 3 ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 4 | fndm 6603 | . . . 4 ⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | |
| 5 | 4 | feq2d 6654 | . . 3 ⊢ (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 6 | 3, 5 | syl5ibcom 245 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 ∅c0 4292 𝒫 cpw 4559 {csn 4585 class class class wbr 5102 dom cdm 5631 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 ≤ cle 11185 2c2 12217 ♯chash 14271 Vtxcvtx 28899 iEdgciedg 28900 UPGraphcupgr 28983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-upgr 28985 |
| This theorem is referenced by: upgrn0 28992 upgrle 28993 |
| Copyright terms: Public domain | W3C validator |