![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrfn | Structured version Visualization version GIF version |
Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrfn | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isupgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isupgr.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | upgrf 26320 | . . 3 ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
4 | fndm 6202 | . . . 4 ⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | |
5 | 4 | feq2d 6243 | . . 3 ⊢ (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
6 | 3, 5 | syl5ibcom 237 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
7 | 6 | imp 396 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3094 ∖ cdif 3767 ∅c0 4116 𝒫 cpw 4350 {csn 4369 class class class wbr 4844 dom cdm 5313 Fn wfn 6097 ⟶wf 6098 ‘cfv 6102 ≤ cle 10365 2c2 11367 ♯chash 13369 Vtxcvtx 26230 iEdgciedg 26231 UPGraphcupgr 26314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-nul 4984 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 df-upgr 26316 |
This theorem is referenced by: upgrn0 26323 upgrle 26324 |
Copyright terms: Public domain | W3C validator |