![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrfn | Structured version Visualization version GIF version |
Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrfn | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isupgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isupgr.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | upgrf 29118 | . . 3 ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
4 | fndm 6672 | . . . 4 ⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | |
5 | 4 | feq2d 6723 | . . 3 ⊢ (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
6 | 3, 5 | syl5ibcom 245 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
7 | 6 | imp 406 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ∖ cdif 3960 ∅c0 4339 𝒫 cpw 4605 {csn 4631 class class class wbr 5148 dom cdm 5689 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 ≤ cle 11294 2c2 12319 ♯chash 14366 Vtxcvtx 29028 iEdgciedg 29029 UPGraphcupgr 29112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-upgr 29114 |
This theorem is referenced by: upgrn0 29121 upgrle 29122 |
Copyright terms: Public domain | W3C validator |