MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrfn Structured version   Visualization version   GIF version

Theorem upgrfn 28918
Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrfn ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem upgrfn
StepHypRef Expression
1 isupgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . 4 𝐸 = (iEdg‘𝐺)
31, 2upgrf 28917 . . 3 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4 fndm 6660 . . . 4 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
54feq2d 6711 . . 3 (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
63, 5syl5ibcom 244 . 2 (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
76imp 405 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3428  cdif 3944  c0 4324  𝒫 cpw 4604  {csn 4630   class class class wbr 5150  dom cdm 5680   Fn wfn 6546  wf 6547  cfv 6551  cle 11285  2c2 12303  chash 14327  Vtxcvtx 28827  iEdgciedg 28828  UPGraphcupgr 28911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698  ax-nul 5308
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2937  df-rab 3429  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-fv 6559  df-upgr 28913
This theorem is referenced by:  upgrn0  28920  upgrle  28921
  Copyright terms: Public domain W3C validator