Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrle | Structured version Visualization version GIF version |
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrle | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isupgr.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | upgrfn 27468 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
4 | 3 | ffvelrnda 6958 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
5 | 4 | 3impa 1109 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
6 | fveq2 6771 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝐹) → (♯‘𝑥) = (♯‘(𝐸‘𝐹))) | |
7 | 6 | breq1d 5089 | . . . 4 ⊢ (𝑥 = (𝐸‘𝐹) → ((♯‘𝑥) ≤ 2 ↔ (♯‘(𝐸‘𝐹)) ≤ 2)) |
8 | 7 | elrab 3626 | . . 3 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ ((𝐸‘𝐹) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸‘𝐹)) ≤ 2)) |
9 | 8 | simprbi 497 | . 2 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘(𝐸‘𝐹)) ≤ 2) |
10 | 5, 9 | syl 17 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 {crab 3070 ∖ cdif 3889 ∅c0 4262 𝒫 cpw 4539 {csn 4567 class class class wbr 5079 Fn wfn 6427 ‘cfv 6432 ≤ cle 11021 2c2 12039 ♯chash 14055 Vtxcvtx 27377 iEdgciedg 27378 UPGraphcupgr 27461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-upgr 27463 |
This theorem is referenced by: upgrfi 27472 upgrex 27473 upgrle2 27486 subupgr 27665 upgrewlkle2 27984 |
Copyright terms: Public domain | W3C validator |