MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrle Structured version   Visualization version   GIF version

Theorem upgrle 29089
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrle ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)

Proof of Theorem upgrle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgrfn 29086 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
43ffvelcdmda 7026 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹𝐴) → (𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
543impa 1109 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6 fveq2 6831 . . . . 5 (𝑥 = (𝐸𝐹) → (♯‘𝑥) = (♯‘(𝐸𝐹)))
76breq1d 5105 . . . 4 (𝑥 = (𝐸𝐹) → ((♯‘𝑥) ≤ 2 ↔ (♯‘(𝐸𝐹)) ≤ 2))
87elrab 3643 . . 3 ((𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ ((𝐸𝐹) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝐹)) ≤ 2))
98simprbi 496 . 2 ((𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘(𝐸𝐹)) ≤ 2)
105, 9syl 17 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  cdif 3895  c0 4282  𝒫 cpw 4551  {csn 4577   class class class wbr 5095   Fn wfn 6484  cfv 6489  cle 11158  2c2 12191  chash 14244  Vtxcvtx 28995  iEdgciedg 28996  UPGraphcupgr 29079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-upgr 29081
This theorem is referenced by:  upgrfi  29090  upgrex  29091  upgrle2  29104  subupgr  29286  upgrewlkle2  29606
  Copyright terms: Public domain W3C validator