MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrle Structured version   Visualization version   GIF version

Theorem upgrle 29125
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrle ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)

Proof of Theorem upgrle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgrfn 29122 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
43ffvelcdmda 7118 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹𝐴) → (𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
543impa 1110 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6 fveq2 6920 . . . . 5 (𝑥 = (𝐸𝐹) → (♯‘𝑥) = (♯‘(𝐸𝐹)))
76breq1d 5176 . . . 4 (𝑥 = (𝐸𝐹) → ((♯‘𝑥) ≤ 2 ↔ (♯‘(𝐸𝐹)) ≤ 2))
87elrab 3708 . . 3 ((𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ ((𝐸𝐹) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝐹)) ≤ 2))
98simprbi 496 . 2 ((𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘(𝐸𝐹)) ≤ 2)
105, 9syl 17 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166   Fn wfn 6568  cfv 6573  cle 11325  2c2 12348  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  UPGraphcupgr 29115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-upgr 29117
This theorem is referenced by:  upgrfi  29126  upgrex  29127  upgrle2  29140  subupgr  29322  upgrewlkle2  29642
  Copyright terms: Public domain W3C validator