| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrle | Structured version Visualization version GIF version | ||
| Description: An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgrle | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isupgr.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | upgrfn 29014 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 4 | 3 | ffvelcdmda 7056 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 5 | 4 | 3impa 1109 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 6 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝐹) → (♯‘𝑥) = (♯‘(𝐸‘𝐹))) | |
| 7 | 6 | breq1d 5117 | . . . 4 ⊢ (𝑥 = (𝐸‘𝐹) → ((♯‘𝑥) ≤ 2 ↔ (♯‘(𝐸‘𝐹)) ≤ 2)) |
| 8 | 7 | elrab 3659 | . . 3 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ ((𝐸‘𝐹) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸‘𝐹)) ≤ 2)) |
| 9 | 8 | simprbi 496 | . 2 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘(𝐸‘𝐹)) ≤ 2) |
| 10 | 5, 9 | syl 17 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 Fn wfn 6506 ‘cfv 6511 ≤ cle 11209 2c2 12241 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 UPGraphcupgr 29007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-upgr 29009 |
| This theorem is referenced by: upgrfi 29018 upgrex 29019 upgrle2 29032 subupgr 29214 upgrewlkle2 29534 |
| Copyright terms: Public domain | W3C validator |